
Kollmorgen Automation Suite
KAS - PLC Library Reference Guide

Document Edition: BB, December 2024

Valid for KAS Software Revision 4.03

Part Number: 959717

For safe and proper use, follow these instructions.
Keep for future use.

KAS - PLC Library |

Copyrights, Licenses, and Trademarks
PCMM2G
The PCMM2G’s Operating System (OS) and boot loader (U-Boot) are based on free and open-source software, distributed under version 3
of the GNU General Public License as published by the Free Software Foundation. For more information about your rights and obligations
with GPL-3.0, see the GNU website: GNU General Public License.

The individual copyright notices, license texts, and disclaimers of warranty for the software components are located in the controller, under
the directory: /usr/share/common-licenses/.

For more information about accessing the PCMM2G’s files, see SSH Login to a Controller.

The OS, bootloader, and their software component's source codes including modifications, copyright notices, license texts, disclaimers of
warranty, and the compilation scripts to build the OS image are available from the Kollmorgen web-site Kollmorgen Support Network -
Downloads.

The OS image and its corresponding sources file is identified by an "OS-Sources" designator, followed by its version number: OS-Sources-
x.xx.x.xxxxx.

The compilation scripts and sources file used to build the OS image is identified by the "OS-Build-Sources" designator, followed by its
version number: OS-Build-Sources-x.xx.x.xxxxx.

See PCMM2G - File Naming Conventions in the KAS online help.

Copyrights
Copyright © 2009-2024 Regal Rexnord Corporation, All Rights Reserved.

Information in this document is subject to change without notice.

The software package described in this document is furnished under a license agreement. The software
package may be used or copied only in accordance with the terms of the license agreement.

Trademarks
Regal Rexnord and Kollmorgen are trademarks of Regal Rexnord Corporation or one of its affiliated companies.

l KAS and AKD are registered trademarks of Kollmorgen.
l EnDat® is a registered trademark of Dr. Johannes Heidenhain GmbH.
l EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH.
l Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation.
l Ethernet/IP is a registered trademark of ODVA, Inc.
l Ghostscript is a registered trademark of Artifex Software, Inc. and is distributed under the AGPL license.
l HIPERFACE® is a registered trademark of Max Stegmann GmbH.
l PLCopen is an independent association providing efficiency in industrial automation.
l PROFINET® is a registered trademark of PROFIBUS and PROFINET International (PI).
l SIMATIC® is a registered trademark of SIEMENS AG.
l SyCon® is a registered trademark of Hilscher GmbH.
l Windows® is a registered trademark of Microsoft Corporation.

Kollmorgen Automation Suite is based on the work of:

l 7-zip (distributed under the terms of the LGPL and the BSD 3-clause licenses - 7-zip - License)
l C++ Mathematical Expression Library (distributed under the MIT License)
l civetweb: Embedded C/C++ web server software (distributed under MIT License)
l curl software library
l jsoncpp software (distributed under the MIT License – see jsoncpp License)
l Mongoose software (distributed under the MIT License - see Mongoose license)
l Qt cross-platform SDK (distributed under the terms of the LGPL3; Qt source is available on KDN)
l Qwt project (distributed under the terms of the Qwt - GNU Lesser General Public License)
l U-Boot, a universal boot loader is used by the AKD PDMM and PCMM (distributed under the terms of the GNU

General Public License). The U-Boot source files, copyright notice, and readme are available on the distribution disk
that is included with the AKD PDMM and PCMM.

l Zlib software library

All other product and brand names listed in this document may be trademarks or registered trademarks of their respective owners.

2 Kollmorgen® | kdn.kollmorgen.com | December 2024

http://www.denx.de/wiki/U-Boot
https://www.gnu.org/licenses/gpl-3.0.html
https://webhelp.kollmorgen.com/kas/Content/5.Using-Controller/SSH/SSH-Login-to-Controller.htm
https://www.kollmorgen.com/en-us/developer-network/downloads
https://www.kollmorgen.com/en-us/developer-network/downloads
https://webhelp.kollmorgen.com/kas/Content/5.Using-Controller/File-Name-Conventions/_OVRVW-KAS-File-Name-Conventions-PCMM2G.htm
http://www.kollmorgen.com/
https://www.regalrexnord.com/
http://www.kollmorgen.com/
https://ghostscript.com/index.html
https://www.gnu.org/licenses/agpl-3.0.html
http://www.plcopen.org/
http://www.hilscher.com/
https://www.7-zip.org/
https://www.7-zip.org/license.txt
http://www.partow.net/programming/exprtk/index.html
https://opensource.org/licenses/MIT
https://github.com/civetweb/civetweb
https://github.com/civetweb/civetweb/blob/master/LICENSE.md
http://curl.haxx.se/docs/copyright.html
https://github.com/open-source-parsers/jsoncpp/blob/e6046e589e0741a1108b6c7e92e33d5fa55293d5/LICENSE
http://code.google.com/p/mongoose/
https://webhelp.kollmorgen.com/kas/Content/1.Preface/Trademarks-Copyrights.htm
https://www.qt.io/
lgpl3.txt
http://qwt.sourceforge.net/
https://webhelp.kollmorgen.com/kas/Content/1.Preface/Licenses/Licenses.htm
http://www.denx.de/wiki/U-Boot
http://www.gnu.org/licenses/gpl-2.0.html
http://www.zlib.net/

Disclaimer
Technical changes which improve the performance of the device may be made without prior notice!

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by
photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission
of Kollmorgen.

The information in this document is believed to be accurate and reliable at the time of its release. Kollmorgen assumes no responsibility for
any damage or loss resulting from the use of this help, and expressly disclaims any liability or damages for loss of data, loss of use, and
property damage of any kind, direct, incidental or consequential, in regard to or arising out of the performance or form of the materials
presented herein or in any software programs that accompany this document.

All timing diagrams, whether produced by Kollmorgen or included by courtesy of the PLCopen organization, are provided with accuracy on a
best-effort basis with no warranty, explicit or implied, by Kollmorgen. The user releases Kollmorgen from any liability arising out of the use of
these timing diagrams.

KAS - PLC Library |

Kollmorgen® | kdn.kollmorgen.com | December 2024 3

KAS - PLC Library |

Table of Contents
1 Programming Languages 11
1.1 Sequential Function Chart (SFC) 11
1.1.1 SFC Execution at Runtime 11
1.1.1.1 Divergence 12
1.1.1.1.1 Order of Action Block Execution 12

1.1.2 Hierarchy of SFC Programs 14
1.1.3 Control an SFC Child Program 14

1.2 Function Block Diagram (FBD) 15
1.2.1 Data Flow 15
1.2.2 FFLD Symbols 15

1.3 Instruction List (IL) 15
1.3.1 Comments 16
1.3.2 Data Flow 16
1.3.3 Evaluation of Expressions 16
1.3.4 Actions 17

1.4 Structured Text (ST) 18
1.4.1 Comments 18
1.4.2 Expressions 18
1.4.3 Statements 18
1.4.3.1 Basic Statements 18
1.4.3.2 Conditional Statements 19
1.4.3.3 Loop Statements 19
1.4.3.4 Other Statements 19

1.5 Constant Expressions 20
1.5.1 Examples 23
1.5.1.1 Valid Constant Expressions 23
1.5.1.2 Invalid Constant Expressions 23

1.6 Variables 24
1.6.1 Groups 24
1.6.2 Data Type and Dimension 25
1.6.3 Name a Variable 25
1.6.4 Variable Attributes 25

1.7 Free Form Ladder Diagram (FFLD) 25
1.7.1 Use of EN Input and ENO Output for Blocks 26
1.7.1.1 Examples 26

1.7.2 FFLD Contacts and Coils 27
1.7.2.1 FFLD Contacts 27
1.7.2.1.1 Serialized and Parallel Contacts 28
1.7.2.1.2 Transition Contacts 28

1.7.2.2 FFLD Coils 29
2 PLC Advanced Libraries 31
2.1 All Functions - Alphabetical 31
2.1.1 Alarm Management 32
2.1.2 Analog Signal Processing 32
2.1.3 Communication 32
2.1.4 Data Collections and Serialization 32

4 Kollmorgen® | kdn.kollmorgen.com | December 2024

2.1.5 Data Log 32
2.1.6 Special Operations 33

2.2 AS-interface Functions 33
2.2.1 Interface 33
2.2.2 Arguments 33

2.3 File Management 34
2.3.1 Sequential Read / Write Function Blocks 34
2.3.2 SD card Functions 35
2.3.2.1 Related Function Blocks 35

2.3.3 SD Card Access 35
2.3.4 File Path Conventions 36
2.3.4.1 File NameWarning and Limitations 36
2.3.4.2 Shared Directory Path Conventions 37
2.3.4.3 SD Card Path Conventions 37
2.3.4.3.1 Valid Paths 38
2.3.4.3.2 Invalid Paths 38

2.3.4.4 USB Flash Drive Path Conventions 38
2.3.4.4.1.1 Valid Paths 38
2.3.4.4.2.2 Invalid Paths 39

2.4 PLC Advanced - Advanced 39
2.4.1 Alarm_A 40

2.4.1.0.1 Sequence 40
2.4.2 Alarm_M 41

2.4.2.0.1 Sequence 42
2.4.3 ApplyRecipeColumn 43
2.4.4 average / averageL 45
2.4.5 CurveLin 47
2.4.6 derivate 48
2.4.7 FIFO 49
2.4.8 FilterOrder1 51

2.4.8.0.1 Example 52
2.4.9 hyster 52
2.4.10 integral 54
2.4.11 LIFO 55
2.4.12 lim_alrm 57
2.4.13 PWM 58
2.4.14 RAMP 60
2.4.15 rand 62
2.4.16 SerializeIn 62
2.4.17 SerializeOut 64
2.4.18 SigID 65
2.4.19 SigPlay 67
2.4.20 SigScale 68
2.4.21 stackint 69
2.4.22 SurfLin 71
2.4.23 VLID 72

2.5 PLC Advanced - Files 73
2.5.1 LogFileCSV 74

KAS - PLC Library |

Kollmorgen® | kdn.kollmorgen.com | December 2024 5

KAS - PLC Library |

2.5.2 SD Card Mounting Functions 76
2.5.2.1 SD_ISREADY 76
2.5.2.2 SD_MOUNT 77
2.5.2.3 SD_UNMOUNT 77

2.6 PID 78
2.6.0.1 Diagram 79

3 PLC Standard Libraries 81
3.1 Programming Languages 81
3.2 Programming Features 81
3.3 Arithmetic Operations 81
3.3.1 All Functions and Operators (Alphabetically) 81
3.3.1.1 Standard Functions 82
3.3.1.2 Standard Operators 82

3.3.2 Addition + 82
3.3.3 Divide / 83
3.3.4 NEG - 85
3.3.5 limit 86

3.3.5.0.1 Function Diagram 86
3.3.6 max 87
3.3.7 min 88
3.3.8 mod / modLR / modR 90
3.3.9 Multiply 91
3.3.10 odd 92
3.3.11 SetWithin 93
3.3.12 Subtraction - 94

3.4 Basic Operations 96
3.4.1 Data Manipulation 96
3.4.2 Control Program Execution 96
3.4.2.1 Language Features 96
3.4.2.2 Structured Statements 96

3.4.3 Assignment := 97
3.4.4 Bit Access 98
3.4.5 Differences between Functions and Function Blocks 98
3.4.6 Call a Sub-Program 99
3.4.6.1 FBD and FFLD Languages 99

3.4.7 CASE OF ELSE END_CASE 100
3.4.7.1 Syntax 100

3.4.8 EXIT 101
3.4.9 FOR TO BY END_FOR 102
3.4.9.1 Syntax 102

3.4.10 IF THEN ELSE ELSIF END_IF 103
3.4.10.1 Syntax 103

3.4.11 ON 104
3.4.11.1 Syntax 104

3.4.12 Parenthesis () 105
3.4.13 REPEAT UNTIL END_REPEAT 106
3.4.13.1 Syntax 106

3.4.14 RETURN RET RETC RETNC RETCN 107

6 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.4.15 WAIT / WAIT_TIME 109
3.4.15.1 Syntax 109

3.4.16 WHILE DO END_WHILE 110
3.4.16.1 Syntax 110

3.5 Boolean Operations 111
3.5.1 All Functions (Alphabetically) 111
3.5.1.1 Standard Operators 111
3.5.1.2 Available Blocks 112

3.5.2 FlipFlop 112
3.5.3 f_trig 113
3.5.4 QOR 115
3.5.5 R 116
3.5.6 RS 117
3.5.7 r_trig 118
3.5.8 S 119
3.5.9 sema 121
3.5.10 SR 122
3.5.11 XOR / XORN 123

3.6 Clock Management Functions (Real Time) 125
3.6.1 All Functions (Alphabetically) 125
3.6.1.1 Format the Present Date / Time 126
3.6.1.2 Read the Real Time Clock 126
3.6.1.3 Time Zone and Clock Synchronization 126
3.6.1.4 Triggering Operations 127

3.6.2 day_time 127
3.6.3 DTAt 128
3.6.3.1 Inputs 128
3.6.3.2 Outputs 128

3.6.4 DTCurDate 130
3.6.5 DTCurDateTime 131
3.6.6 DTCurTime 133
3.6.7 DTDay 133
3.6.8 DTGetNTPServer 134
3.6.9 DTGetNTPSync 136
3.6.10 DTGetTimeZone 138
3.6.10.1 Inputs 138
3.6.10.2 Outputs 139

3.6.11 DTEvery 140
3.6.12 DTFormat 142
3.6.13 DTHour 143
3.6.14 DTListTimeZones 144
3.6.15 DTMake 146
3.6.16 DTMin 147
3.6.17 DTMonth 148
3.6.18 DTMs 149
3.6.19 DTSec 150
3.6.20 DTSetDateTime 151
3.6.21 DTSetNTPServer 153

KAS - PLC Library |

Kollmorgen® | kdn.kollmorgen.com | December 2024 7

KAS - PLC Library |

3.6.22 DTSetNTPSync 155
3.6.23 DTSetTimeZone 157
3.6.24 DTYear 159
3.6.25 List of Date / Time / NTP ErrorID Codes 159

3.7 Comparison Operations 160
3.7.1 CMP 160
3.7.2 GE >= 161
3.7.3 GT > 163
3.7.4 EQ = 164
3.7.5 NE <> 165
3.7.6 LE <= 167
3.7.7 LT < 168

3.8 Conversion Functions 169
3.8.1 All Functions (Alphabetically) 170
3.8.1.1 Convert Data to Another Data Type 170
3.8.1.2 BCD Format Conversions 170

3.8.2 any_to_bool 171
3.8.3 any_to_dint / any_to_udint 172
3.8.4 any_to_int / any_to_uint 173
3.8.5 any_to_lint / any_to_ulint 174
3.8.6 any_to_lreal 176
3.8.7 any_to_real 177
3.8.7.1 Outputs 177

3.8.8 any_to_time 178
3.8.9 any_to_sint / any_to_usint 180
3.8.10 any_to_string 181
3.8.11 num_to_string 182
3.8.12 bcd_to_bin 183
3.8.13 bin_to_bcd 185

3.9 Counters 186
3.9.1 CTD / CTDr 186
3.9.2 CTU / CTUr 187
3.9.3 CTUD / CTUDr 189
3.9.3.1 Remarks 189

3.10 Mathematic Operations 190
3.10.1 abs / absL 191
3.10.2 expt 192
3.10.3 EXP / EXPL 193
3.10.4 log / logL 194
3.10.5 LN / LNL 195
3.10.6 pow / powL 196
3.10.7 root 198
3.10.7.1 FBD Language 198

3.10.8 ScaleLin 199
3.10.9 sqrt / sqrtL 200
3.10.10 trunc / truncL 202

3.11 Miscellaneous Functions 203
3.11.1 EnableEvents 203

8 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.11.2 GetSysInfo 204
3.12 Registers 206
3.12.1 All Register Functions (Alphabetically) 206
3.12.1.1 Advanced Function 206
3.12.1.2 Bit Access 207
3.12.1.3 Bit-to-Bit Functions 207
3.12.1.4 Pack / Unpack Functions 207
3.12.1.5 Standard Functions 207

3.12.2 and_mask 208
3.12.3 HiByte 209
3.12.4 LoByte 210
3.12.5 HiWord 211
3.12.6 LoWord 212
3.12.7 MakeDWord 213
3.12.8 MakeWord 215
3.12.9 MBShift 216
3.12.10 not_mask 217
3.12.11 or_mask 218
3.12.12 Pack8 220
3.12.13 rol 221
3.12.14 ror 222
3.12.15 SetBit 225
3.12.16 shl 226
3.12.17 shr 227
3.12.18 SWAB 228

3.12.18.0.1 Examples 229
3.12.19 TestBit 230
3.12.20 Unpack8 231
3.12.21 xor_mask 232

3.13 Selectors 233
3.13.1 mux 234

3.13.1.0.1 234
3.13.1.0.2 235

3.13.2 mux4 235
3.13.2.0.1 236

3.13.3 mux8 237
3.13.3.0.1 237

3.13.4 mux64 238
3.13.4.0.1 239

3.13.5 sel 240
3.14 Standard Functions 242
3.14.1 CountOf 242
3.14.2 DEC 243
3.14.3 INC 244
3.14.4 MoveBlock 246
3.14.5 NEG - 247
3.14.6 NOT 248

3.15 String Operations 250

KAS - PLC Library |

Kollmorgen® | kdn.kollmorgen.com | December 2024 9

KAS - PLC Library |

3.15.1 Character Strings 250
3.15.2 Manage String Tables 250
3.15.3 ArrayToString / ArrayToStringU 250
3.15.4 ascii 251
3.15.5 AToH 253
3.15.6 char 254
3.15.7 concat 255
3.15.8 CRC16 256
3.15.9 delete 257
3.15.10 find 258
3.15.11 HToA 260
3.15.12 insert 261
3.15.13 left 262
3.15.14 LoadString 264
3.15.15 mid 265
3.15.16 mlen 266
3.15.17 replace 267
3.15.18 right 269
3.15.19 StringTable 270
3.15.19.1 String Table Resources 271

3.15.20 StringToArray / StringToArrayU 272
3.16 Timers 273
3.16.1 blink 274
3.16.2 BlinkA 275
3.16.3 PLS 276
3.16.4 sig_gen 278
3.16.5 TMD 279
3.16.6 TMU / TMUsec 281
3.16.7 TOF / TOFR 282
3.16.8 TON 284
3.16.9 TP / TPR 285

3.17 Trigonometric Functions 287
3.17.1 acos / acosL 287
3.17.2 asin / asinL 288
3.17.3 atan / atanL 290
3.17.4 atan2 / atan2L 291
3.17.5 cos / cosL 292
3.17.6 sin / sinL 293
3.17.7 tan / tanL 294
3.17.7.1 Inputs 294
3.17.7.2 Outputs 294

3.17.8 UseDegrees 295
Support and Services 297

10 Kollmorgen® | kdn.kollmorgen.com | December 2024

1 Programming Languages
This section provides information about the syntax, structure, and use of declarations and statements supported
by the KAS-IDE application language.

These are the available programming languages of the IEC 61131-3 standard:

l "Free Form Ladder Diagram (FFLD)" (➜ p. 25)
l "Function Block Diagram (FBD)" (➜ p. 15)
l "Instruction List (IL)" (➜ p. 15)
l "Sequential Function Chart (SFC)" (➜ p. 11)
l "Structured Text (ST)" (➜ p. 18)

A language must be selected for each program or User-Defined Function Block of the application.

When using FBD or FFLD languages, review Use ST Expressions in Graphic Language.

1.1 Sequential Function Chart (SFC)
The SFC language is a state diagram.

l Graphical steps are used to represent stable states.
l Transitions describe the conditions and events that lead to a change of state.
l Using SFC simplifies the programming of sequential operations because it saves a lot of variables and
tests just for maintaining the program context.

Do not use SFC as a decision diagram.
Using a step as a point of decision and transitions as conditions in an algorithm must never appear in an SFC
chart.
Using SFC as a decision language leads to poor performance and complicate charts.
ST must be preferred when programming a decision algorithm that has no sense in term of program state.

These are basic components of an SFC chart:

Chart Programming

l SFC Steps
l SFC Transitions
l Create SFC Parallel Branches
l Jump to an SFC Step

l Actions in an SFC Step
l Timeout on an SFC Step
l Condition of an SFC Transition

The KAS-IDE fully supports SFC programming with several hierarchical levels of charts (e.g., a chart that
controls another chart).

Working with a hierarchy of SFC charts is an easy and powerful way for managing complex sequences and
saves performances at runtime.

See these sections for more information:

l "Hierarchy of SFC Programs" (➜ p. 14)
l "Control an SFC Child Program" (➜ p. 14)

1.1.1 SFC Execution at Runtime
SFC programs are executed sequentially within a target cycle according to the order defined when entering
programs in the hierarchy tree.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 11

KAS - PLC Library | 1 Programming Languages

l A parent SFC program is executed before its children.
l This implies that when a parent starts or stops a child, the corresponding actions in the child
program are performed during the same cycle.

l In a chart, all valid transitions are evaluated first and then actions of active steps are performed.
l The chart is evaluated from the left to the right and from the top to the bottom.

Example

Execution order:

l Evaluate transitions:
l 1, 101, 2

l Manage steps:
l 1, 101, 201, 102
l 3

The initial steps define the initial status of the program when it is started.

l All top level (main) programs are started when the application starts.
l Child programs are explicitly started from action blocks within the parent programs.

The evaluation of transitions leads to changes of active steps, according to these rules:

l A transition is crossed if:
l Its condition is TRUE and all steps linked to the top of the transition (before) are active.

l When a transition is crossed:
l All steps linked to the top of the transition (before) are deactivated.
l All steps linked to the bottom of the transition (after) are activated.

1.1.1.1 Divergence

l All conditions are considered as exclusive, according to a left-to-right priority order.
l It means a transition is considered as FALSE if at least one of the transitions connected to the
same divergence on its left side is TRUE.

1.1.1.1.1 Order of Action Block Execution
For a given cycle, if a transition is:

l FALSE, the N-action blocks are evaluated for all active steps waiting on that transition.
l TRUE, the P0 action blocks are evaluated for all active steps waiting on that transition, followed by the P1
and N steps for all steps waiting on that transition.

l The steps that were waiting on that transition are then marked as active.

Example

Using this SFC:

12 Kollmorgen® | kdn.kollmorgen.com | December 2024

The order of action block execution for a given cycle is:

Incoming State Evaluating Transition If Transition is FALSE If Transition is TRUE

First Cycle N/A [1] P1
[1] N

Transition 1.
Not yet TRUE.

Transition 1 [1] N [1] P0
[101] P1
[101] N
[201] P1
[201] N

Passed transition 1.
Transition 101 not yet TRUE.

Transition 101 [101] N
[201] N

[101] P0
[201] N
[102] P1
[102] N

Passed transitions 1 and 101
Transition 2 not yet TRUE.

Transition 2 [201] N
[102] N

[201] P0
[102] P0
[3] P1
[3] N

Execution of SFC in the IEC 61131-3 target is sampled according to the target cycles.
When a transition is crossed within a cycle, these steps are activated.
The evaluation of the chart continues in the next cycle.
If several consecutive transitions are TRUE within a branch, only one of them is crossed within one target cycle.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 13

KAS - PLC Library | 1 Programming Languages

Some runtime systems may not support exclusivity of the transitions within an divergence.
See the OEM instructions for more information about SFC support.

1.1.2 Hierarchy of SFC Programs
Each SFC program can have one or more child programs.

l Child programs are written in SFC.
l They are started or stopped in the actions of the parent program.
l The number of hierarchy levels must not exceed 19.
l A child program can also have children.

l When a child program is stopped, its children are also stopped.
l When a child program is started, it must start its children.
l A child program is controlled (started or stopped) from the action blocks of its parent program.
l Designing a child program is:

l a simple way to program an action block in SFC language.
l very useful for designing a complex process and separate operations due to different
aspects of the process.

l Example: It is common to manage the execution modes in a parent program and to
handle details of the process operations in child programs.

1.1.3 Control an SFC Child Program
Controlling a child program can be simply achieved by specifying the name of the child program as an action
block in a step of its parent program.

These are possible qualifiers that can be applied to an action block for handling a child program:

Child (N); Starts the child program when the step is activated and stops (kills) it when
the step is deactivated.

Child (S); Starts the child program when the step is activated.
Initial steps of the child program are activated.

Child (R); Stops (kills) the child program when the step is activated.
All active steps of the child program are deactivated.

Alternatively, use these statements in an action block programmed in ST language.

In this table, "prog" represents the name of the child program:

GSTART (prog); Starts the child program when the step is activated.
Initial steps of the child program are activated.

GKILL (prog); Stops (kills) the child program when the step is activated.
All active steps of the child program are deactivated.

GFREEZE (prog); Suspends the execution of a child program.
GRST (prog); Restarts a program suspended by a GFREEZE command.

Use the GSTATUS function in expressions.

This function returns the current state of a child SFC program:

GSTATUS (prog) Returns the current state of a child SFC program:
0: program is inactive
1: program is active
2: program is suspended

When a child program is started by its parent program, it keeps the "inactive" status until it is executed (further in
the cycle).
If a child program is started in an SFC chart, GSTATUS returns 1 (active) on the next cycle.

14 Kollmorgen® | kdn.kollmorgen.com | December 2024

1.2 Function Block Diagram (FBD)
A function block diagram is a data flow between constant expressions or variables and operations represented
by rectangular blocks.

l Operations can be basic operations, function calls, or function block calls.
l The name of the operation or function, or the type of function block is written within the block rectangle.
l With a function block call, the name of the called instance is written in the header of the block rectangle.

Example

1.2.1 Data Flow

l The data flow represents values of any data type.
l All connections must be from input and outputs points having the same data type.

l With a Boolean connection, use a connection link terminated by a small circle.
l This indicates a Boolean negation of the data flow.

l The data flow must be understood from the left to the right and from the top to the bottom.
l It is possible to use labels and jumps to change the default data flow execution.

1.2.2 FFLD Symbols
FFLD symbols can also be entered in FBD diagrams and linked to FBD objects.

l See these sections for information about components of the FFLD language:
l "FFLD Coils" (➜ p. 29)
l "FFLD Contacts" (➜ p. 27)
l Power Rails

l Special vertical lines are available in FBD language for representing the merging of FFLD parallel lines.
l Such vertical lines represent a OR operation between the connected inputs.

Figure 2-1: Example: OR Vertical Line used in an FBD Diagram

1.3 Instruction List (IL)
This language is more appropriate when your algorithm refers to the Boolean algebra.

A program written in IL language is a list of instructions.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 15

KAS - PLC Library | 1 Programming Languages

l Each instruction is written on one line of text.
l An instruction can have one or more operands.
l Operands are variables or constant expressions.
l Each instruction begins with a label, followed by a colon (:).
l Labels are used as destination for jump instructions.

KAS-IDE allows you to mix ST and IL languages in textual program.

l ST Language is the default language.
l When you enter IL Language instructions, the program must be entered between BEGIN_IL and END_IL
keywords.

Example

BEGIN_IL
FFLD var1
ST var2
END_IL

1.3.1 Comments
Comment text can be entered at the end of a line containing an instruction.

l Comment texts have no meaning for the execution of the program.
l Comment text must begin with (* and end with *).
l Comments can be entered on empty lines (with no instruction) and on several lines (i.e., a comment text
can include line breaks).

l Comment texts cannot be nested.

(* My comment *)
LD a
ST b (* Store value in d *)

1.3.2 Data Flow
An IL Language complete statement is made of instructions for:

l first: evaluating an expression (called current result).
l then: use the current result for performing actions.

1.3.3 Evaluation of Expressions
The order of instructions in the program is the one used for evaluating expressions, unless parentheses are
inserted.

This list is the available instructions for evaluation of expressions:

Instruction Operand Meaning

"Addition +" (➜ p. 82) Numerical Performs an addition of all inputs.
Adds the operand and the current result.

AND ANDN & Boolean Performs a logical AND of all inputs.
AND between the operand and the current result.

16 Kollmorgen® | kdn.kollmorgen.com | December 2024

Instruction Operand Meaning

"Divide /" (➜ p. 83) Numerical Performs a division of all inputs.
Divide the current result by the operand.

"EQ =" (➜ p. 164) Numerical Test if the first input is equal to the second input.
Compares the current result with the operand.

"Assignment :=" (➜ p.
97)

Any type Loads the operand in the current result.

Function Call Functional
Arguments

Calls a function.

"GE >=" (➜ p. 161) Numerical Tests if the first input is greater than or equal to the
second input.
Compares the current result with the operand.

"GT >" (➜ p. 163) Numerical Test if the first input is greater than the second input.
Compares the current result with the operand.

"LE <=" (➜ p. 167) Numerical Test if the first input is less than or equal to the second
input.
Compares the current result with the operand.

"LT <" (➜ p. 168) Numerical Test if the first input is less than the second input.
Compares the current result with the operand.

"Multiply" (➜ p. 91) Numerical Performs a multiplication of all inputs.
Multiply the operand and the current result.

"NE <>" (➜ p. 165) Numerical Test if the first input is not equal to the second input.
Compares the current result with the operand.

OR / ORN Boolean Performs a logical OR of all inputs.
OR between the operand and the current result.

"Parenthesis ()" (➜ p.
105)

Changes the execution order.

"Subtraction -" (➜ p.
94)

Numerical Performs a subtraction of all inputs.
Subtract the operand from the current result.

"XOR / XORN" (➜ p.
123)

Boolean XOR between the operand and the current result.

Instructions suffixed by N use the Boolean negation of the operand.

1.3.4 Actions
These instructions perform actions according to the value of current result.

Some of these instructions do not need a current result to be evaluated.

Instruction Operand Meaning

CAL f. block Calls a function block (no current result needed).

CALC f. block Calls a function block if the current result is TRUE.

CALNC / CALCN f. block Calls a function block if the current result is FALSE.

JMP label Jump to a label - no current result needed.

JMPC label Jump to a label if the current result is TRUE.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 17

KAS - PLC Library | 1 Programming Languages

Instruction Operand Meaning

JMPNC / JMPCN label Jump to a label if the current result is FALSE.

R Boolean Sets the operand to FALSE if the current result is TRUE.

RET Jump to the end of the current program - no current result
needed.

RETC / RETNC /
RETCN

Jump to the end of the current program if the current result is
TRUE / FALSE.

S Boolean Sets the operand to TRUE if the current result is TRUE.

ST / STN Any type Stores the current result in the operand.

Instructions suffixed by N use the Boolean negation of the operand.

An IL Language program cannot be called if there is no entry variable or if it's type is complex (e.g., array).

1.4 Structured Text (ST)
ST is a structured literal programming language.

l A ST program is a list of statements.
l Each statement describes an action and must end with a semi-colon (;).

l The presentation of the text has no meaning for a ST program.
l You can insert blank characters and line breaks where you want in the program text.

1.4.1 Comments
Comment text can be entered anywhere in an ST program.

l Comment text:
l Has no meaning for the execution of the program.
l Must begin with (* and end with *).
l Can be entered on several lines (i.e., a comment text can include line breaks).
l Cannot be nested.

1.4.2 Expressions
Each statement describes an action and can include evaluation of complex expressions.

An expression is evaluated:

l From the left to the right.
l According to the default priority order of operators.

l The default priority can be changed using parentheses "Parenthesis ()" (➜ p. 105).

Arguments of an expression can be:

l Declared "Variables" (➜ p. 24).
l "Constant Expressions" (➜ p. 20).
l Function Call.

1.4.3 Statements

1.4.3.1 Basic Statements

18 Kollmorgen® | kdn.kollmorgen.com | December 2024

These are the available basic statements that can be entered in an ST program:

l "Assignment :=" (➜ p. 97) (assignment)
l Call a Function Block

1.4.3.2 Conditional Statements
These are the available conditional statements in ST Language:

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)

1.4.3.3 Loop Statements
These are the available statements for describing loops in ST Language:

l "FOR TO BY END_FOR" (➜ p. 102)
l Loops with FOR instructions are slow.
Optimize your code by replacing such iterations with a WHILE statement.

 Iteration of statement execution.
 The BY statement is optional (default value is 1)
FOR iCount := 0 TO 100 BY 2 DO
MyVar := MyVar + 1;
END_FOR;

l "REPEAT UNTIL END_REPEAT" (➜ p. 106)

 Repeat a list of statements.
 Condition is evaluated on loop exit after the statements.
iCount := 0;
REPEAT
MyVar := MyVar + 1;
iCount := iCount + 1;
UNTIL iCount < 100 END_REPEAT;

l "WHILE DO END_WHILE" (➜ p. 110)

 Repeat a list of statements.
 Condition is evaluated on loop entry before the statements.
iCount := 0;
WHILE iCount < 100 DO
iCount := iCount +1;
MyVar := MyVar + 1;
END_WHILE;

1.4.3.4 Other Statements
These are some other statements in ST Language:

l "WAIT / WAIT_TIME" (➜ p. 109) - Suspend the execution.
l "ON" (➜ p. 104) - Conditional execution of statements: provides a simpler syntax for checking the rising
edge of a Boolean condition.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 19

KAS - PLC Library | 1 Programming Languages

ST provides an automatic completion of typed words.
See Auto-completion of Wordsfor more information.

1.5 Constant Expressions
Constant expressions can be used in all languages for assigning a variable with a value.

All constant expressions have well-defined Data Types according to their semantics.

If you program an operation between variables and constant expressions having inconsistent data types, it
leads to syntactic errors when the program is compiled.

These are the syntactic rules for constant expressions according to possible data types:

Type Prefix Description

BOOL Boolean

l These are the Boolean reserved keywords:
l TRUE
l FALSE

l See "Valid Constant Expressions" (➜ p. 23) for an example.

DINT 32-bit (default) Integer

l 32-bit integer constant expressions must be valid numbers between
-2147483648 to 2147483647.

l DINT is the default size for integers: such constant expressions do
not need any prefix.

l Use 2#, 8#, or 16# prefixes to specify an integer in binary, octal or
hexadecimal basis, respectively.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

INT INT# 16-bit Integer

l 16-bit integer constant expressions are valid integer values
(between -32768 and +32767).

l Must be prefixed with INT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

LINT LINT# Long (64-bit) Integer

l Long integer constant expressions are valid integer values.
l Must be prefixed with LINT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

20 Kollmorgen® | kdn.kollmorgen.com | December 2024

Type Prefix Description

LREAL LREAL# Double Precision Floating Point Value

l Real constant expressions must be valid numbers, must include a
dot (.).

l If you need to enter a real expression having an integer value, add .0
(dot zero) at the end of the number.

l You can use F or E separators for specifying the exponent in case of
a scientific representation.

l LREAL constants are limited to 14-15 digits of accuracy.
l Any digits after these significant digits are lost, leading to a loss
of precision.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

REAL Single Precision Floating Point Value

l REAL is the default precision for floating points: such expressions
do not require a prefix.

l Important: REAL is restrictive, but because it is the default, it is
recommended to explicitly declare your real constants with the
LREAL# prefix.

l Real constant expressions must be valid numbers, must include a
dot (.).

l If you need to enter a real expression having an integer value, add .0
(dot zero) at the end of the number.

l You can use F or E separators for specifying the exponent in case of
a scientific representation.

l REAL constants are limited to 6-7 digits of accuracy.
l Any digits after these significant digits are lost, leading to a loss
of precision.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

SINT SINT# Small (8-bit) Integer

l Small integer constant expressions are valid integer values
(between -128 and +127).

l Must be prefixed with SINT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

l See "Valid Constant Expressions" (➜ p. 23) for an example.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 21

KAS - PLC Library | 1 Programming Languages

Type Prefix Description

STRING Character String

l String expressions must be written between single quote marks (' ').
l The length of the string cannot exceed 255 characters.
l See "Valid Constant Expressions" (➜ p. 23) for an example.
l Use these sequences to represent a special or not-printable
character within a string:

Sequence Description

$$ A "$" character

$' A single quote

$T A tab stop (ASCII code 9)

$R A carriage return character (ASCII code 13)

$L A line feed character (ASCII code 10)

$N Carriage return plus line feed characters (ASCII
codes 13 and 10)

$P A page break character (ASCII code 12)

$xx Any character (xx is the ASCII code expressed
on two hexadecimal digits

TIME T#
or
TIME#

Time of Day

l Time-constant expressions represent durations that must be less
than 24 hours.

l Expressions must be prefixed by either T# or TIME#.
l They are expressed as a number of:

l hours followed by h
l minutes followed by m
l seconds followed by s
l milliseconds followed by ms
l The order of units (hour, minutes, seconds, milliseconds) must
be respected.
l Blank characters are not allowed in the time expression.
l There must be at least one valid unit letter in the
expression.

l See "Valid Constant Expressions" (➜ p. 23) for an
example.

UDINT/DWORD UDINT# Unsigned 32-bit Integer

l Unsigned 32-bit integer constant expressions are valid integer
values (between 0 and 4294967295).

l Must be prefixed with UDINT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

UINT/WORD UINT# Unsigned 16-bit Integer

l Unsigned 16-bit integer constant expressions are valid integer
values (between 0 and +65535).

l Must be prefixed with UINT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

22 Kollmorgen® | kdn.kollmorgen.com | December 2024

Type Prefix Description

ULINT/LWORD ULINT# Unsigned Long Unsigned (64-bit) Integer

l Unsigned 64-bit integer constant expressions are valid integer
values.

l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

USINT/BYTE USINT# Unsigned 8-bit Integer

l Unsigned small integer constant expressions are valid integer
values (between 0 and 255).

l Must be prefixed with USINT#.
l All integer expressions having no prefix are considered "DINT" (➜
p. 20) integers.

1.5.1 Examples

1.5.1.1 Valid Constant Expressions
These are examples of valid constant expressions.

Constant Expression Type Description

'hello' Character String Character string.

'I$'m here' Character String Character string with a quote inside (I'm here).

'name$Tage' Character String Character string with two words separated by a
tab.

'x$00y' Character String Character string with two characters separated
by a null character (ASCII code 0).

0.0 REAL 0 expressed as a REAL number.

1.002E3 REAL 1002 expressed as a REAL number in scientist
format.

2#1000100 DINT DINT integer in binary basis.

8#34712 DINT DINT integer in octal basis.

16#abcd DINT DINT integer in hexadecimal basis.

123456 DINT DINT (32-bit) integer.

FALSE BOOL FALSE Boolean expression.

INT#2000 16-bit Integer 16-bit integer.

LINT#1 Long (64-bit) Integer Long (64 bit) integer having the value 1.

LREAL#1E-200 Double Precision
Floating Point Value

Double precision real number.

SINT#127 Small (8-bit) Integer Small integer.

T#1h123ms Time of Day TIME value with some units missing.

T#23h59m59s999ms Time of Day Maximum TIME value.

TIME#0s Time of Day Null TIME value.

TRUE BOOL TRUE Boolean expression.

1.5.1.2 Invalid Constant Expressions
These are examples of errors in constant expressions:

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 23

KAS - PLC Library | 1 Programming Languages

Invalid Constant Expressions Description

'I'm here' Quote within a string with "$" mark omitted.

1a2b Basis prefix ("16#") omitted.

1E-200 "LREAL#" prefix omitted for a double precision float.

BooVar := 1; 0 and 1 cannot be used for Booleans.

hello Quotes omitted around a character string.

T#12 Time unit missing.

There are pre-defined constants.
See Use the Defines List, Internal Defines, and Global Defines for more information.

1.6 Variables
All variables used in programs must be declared first in the variable editor.

Each variable belongs to a group and must be identified by a unique name in its group.

1.6.1 Groups
A group is a set of variables.

A group refers to a physical class of variables or identifies the variables local to a program or user-defined
function block.

This table lists the possible groups:

Groups Description

%I... Channels of an input board.

l Variables with same data type are linked to a physical input device.
l See "Variables" (➜ p. 24).

%Q... Channels of an output board.

l Variables with same data type are linked to a physical output device.
l See "Variables" (➜ p. 24).

GLOBAL Internal variables known by all programs.

PROGRAMxxx All internal variables local to a program.
The name of the group is the name of the program.

Retain Variables Non volatile internal variables known by all programs.

l The latest values from RETAIN variables are stored from the Runtime into a file
on the hard disk drive (HDD).

l In case of a warm (re)start, or a cold start, the Runtime initializes the variables
with these stored values.

l The Runtime stores these values periodically per default, triggered every 10ms in
an own, lower priority thread.

l The storage can be configured using either:
l The menu tab entry Project/Settings.../Runtime/Cycle time.
l The function F_SAVERETAIN used in the program code.

l If a device with zenon does not have a robust HDD, it is recommended to
deactivate the periodical storage and store seldom.
l This can be done via a manual function call.

24 Kollmorgen® | kdn.kollmorgen.com | December 2024

../../../../../Content/4.Using-KAS-IDE/Use-Defines/Use the Defines list.htm
../../../../../Content/4.Using-KAS-IDE/Use-Defines/Defines_Internal.htm
../../../../../Content/4.Using-KAS-IDE/Use-Defines/Defines_User.htm
../../../../../Content/9.KAS-GUI/Variables/Variables_Retains.htm

Groups Description

UDFBxxx l All internal variables local to a User-Defined Function Block plus its IN and OUT
parameters.

l The name of the group is the name of the program.

1.6.2 Data Type and Dimension
Each variable must have a valid data type.

l It can be either a basic data type or a function block.
l In a function block, the variable is an instance of the function block.

l Physical I/Os must have a basic data type.
l Instances of function blocks can refer either to a standard block or to a User Defined Function Block.

If the selected data type is STRING, you must specify a maximum length.
This cannot exceed 255 characters.

l See the list of Data Types.
l See Call a Function Block about using a function instance.
l Specify dimensions for an internal variable to declare Arrays.

1.6.3 Name a Variable
A variable must be identified by a unique name within its parent group.

l The variable name cannot:
l be a reserved keyword of the programming languages.
l have the same name as a standard or C function or function block.

l A variable must not have the same name as a program or a user-defined function block.
l The name of a variable must begin by a letter or an underscore (_), followed by letters, digits, or
underscore marks.

l Two consecutive underscores in a variable name is not allowed.
l Naming is case-insensitive.

l Two names with different cases are considered as the same.

1.6.4 Variable Attributes
Physical I/Os are marked as either Input or Output.

l Each internal variable can be configured as Read / Write or Read-only.
l See Attributes.

l Read-only variables can be mapped to Outputs but not to Inputs.
l Inputs can change state and a Read-only variable cannot change its value to match the
input state.

l Parameters of User-Defined Function Blocks are marked as either INor OUT.

1.7 Free Form Ladder Diagram (FFLD)
A Ladder Diagram is a list of rungs.

l Each rung represents a Boolean data flow from a power rail on the left.
l The power rail represents the TRUE state.
l The data flow must be understood from the left to the right.
l Each symbol connected to the rung either changes the rung state or performs an operation.

l These are possible graphic items to be entered in FFLD diagrams:
l Power Rails
l FFLD Contacts and Coils

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 25

../../../../../Content/3.UnderstandKAS/Data Types.htm
../../../../../Content/PLC_library/arrays.htm
../../../../../Content/9.KAS-GUI/Variables/Variables.htm#Attributes

KAS - PLC Library | 1 Programming Languages

l Operations, Functions and Function blocks, represented by rectangular blocks.
l See:
l Function Call or Call a Function Block.
l LABELS and Jumps JMP JMPC JMPNC JMPCN
l Use ST Expressions in Graphic Language

1.7.1 Use of EN Input and ENO Output for Blocks
The rung state in a FFLD diagram is always Boolean.

l Blocks are connected to the rung with their first input and output.
l This implies that special EN and ENO input and output are added to the block if its first input or
output is not Boolean.

l The EN input is a condition.
l It means that the operation represented by the block is not performed if the rung state (EN) is
FALSE.

l The ENO output always represents the sane status as the EN input.
l The rung state is not modified by a block having an ENO output.

1.7.1.1 Examples

l This is an example of "XOR / XORN" (➜ p. 123) with Boolean inputs and outputs and requiring no EN or
ENO pin.

l First input is the rung.
l The rung is the output.

l This is an example of the "GT >" (➜ p. 163) (greater than) with non-Boolean inputs and a Boolean output.
l This block has an EN input in FFLD.
l The comparison is executed only if EN is TRUE.

l This is an example of the "sel" (➜ p. 240) with a first Boolean input but an integer output.
l This block has an ENO output in FFLD.
l The input rung is the selector.
l ENO has the same value as SELECT.

l This is an example of "Addition +" (➜ p. 82) having only numerical arguments.
l This block has both EN and ENO pins in FFLD.
l The addition is executed only if EN is TRUE.
l ENO has the same value as EN.

26 Kollmorgen® | kdn.kollmorgen.com | December 2024

1.7.2 FFLD Contacts and Coils
This is a list of the FFLD contact and coil types:

Contacts Coils

Negative Transition -|N|- Reset (Unlatch) -(R)-

Normally Closed -|/|- De-energize -(/)-

Normally closed negative transition -|/N|- Negative transition sensing coil -(N)-

Normally closed positive transition -|/P|- Positive transition sensing coil -(P)-

Normally Open -| |- Energize -()-

Positive Transition -|P|- Set (Latch) -(S)-

See Also

l "FFLD Coils" (➜ p. 29)
l "FFLD Contacts" (➜ p. 27)

1.7.2.1 FFLD Contacts
Contacts are basic graphic elements of the FFLD language.

l A contact is associated with a Boolean variable which is displayed above the graphic symbol.
l A contact sets the state of the rung on its right side, according to the value of the associated variable and
the rung state on its left side.

l "Serialized and Parallel Contacts" (➜ p. 28)
l "Transition Contacts" (➜ p. 28)

The possible contact symbols are:

Variable Contacts Description

Normal boolVariable
-] [-

The flow on the right is the Boolean AND operation between:

l (1) the flow on the left.
l (2) the associated variable.

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 27

KAS - PLC Library | 1 Programming Languages

Variable Contacts Description

Negated boolVariable
-]/[-

The flow on the right is the Boolean AND operation between:

l (1) the flow on the left.
l (2) the negation of the associated variable.

Positive boolVariable
-]P[-

The flow on the right is TRUE when both:

l The flow on the left is TRUE.
l The associated variable is TRUE and was FALSE the last time
this contact was scanned (rising edge).

Negative Transition boolVariable
-]N[-

The flow on the right is TRUE when both:

l The flow on the left is TRUE.
l The associated variable is FALSE and was TRUE last time
this contact was scanned (falling edge).

Normally Closed
Positive Transition

boolVariable
-]/P[-

The flow on the right is TRUE when both:

l The flow on the left is TRUE.
l The associated variable does not change from FALSE to
TRUE from the last scan of this contact to this scan (NOT
rising edge).

Normally Closed
Negative Transition

boolVariable
-]/N[-

The flow on the right is TRUE when both:

l The flow on the left is TRUE.
l The associated variable does not change from TRUE to
FALSE from the last scan of this contact to this scan (NOT
falling edge).

1.7.2.1.1 Serialized and Parallel Contacts
Two serial normal contacts represent an AND ANDN & operation.

Two contacts in parallel represent an OR / ORN operation.

1.7.2.1.2 Transition Contacts
The transition contacts -|P|-, -|N -|/P|-, and -|/N|- compare the current state of the Boolean variable to the
Boolean’s state the last time the contact was scanned.

l This means the Boolean variable could change states several times during a scan, but if it’s back to the
same state when the transition contact is scanned, the transition contact will not produce a TRUE.

l Some function blocks can complete immediately.
l Therefore a different approach, other than using transition contacts, is needed to determine if a
function block completed successfully.

Example

28 Kollmorgen® | kdn.kollmorgen.com | December 2024

MC_GrpEnable executes and turns on its Done output immediately.

In this code:

l The GroupEnableDone positive transition contact only provides a TRUE the first time MC_GrpEnable is
executed.

l For all subsequent executions, the positive transition contact does not provide a TRUE since
GroupEnableDone is TRUE every time the contact is scanned.

To remedy this, this code uses the SET and RESET of a Boolean (i.e., EnableRequest) to provide a way to
detect each successful execution of the function block:

When a contact or coil is selected, press the Spacebar to change its type (e.g., normal, negated, etc.)
When the application is running, select a contact and press the Spacebar to swap its value between TRUE and
FALSE.

1.7.2.2 FFLD Coils
Coils are basic graphic elements of the FFLD language.

l A coil is associated with a Boolean variable displayed above the graphic symbol.
l A coil performs a change of the associated variable according to the flow on its left-hand side.
l The possible coil symbols are:

KAS - PLC Library | 1 Programming Languages

Kollmorgen® | kdn.kollmorgen.com | December 2024 29

KAS - PLC Library | 1 Programming Languages

Variable Coils Description

Negated boolVariable
-(/)-

The associated variable is forced to the negation of the flow on the
left of the coil.

Negative Transition boolVariable
-(N)-

The associated variable is forced to TRUE if the flow on the left
changes from TRUE to FALSE (and forced to FALSE in all other
cases).

Normal boolVariable
-()-

The associated variable is forced to the value of the flow on the
left of the coil.

Positive Transition boolVariable
-(P)-

The associated variable is forced to TRUE if the flow on the left
changes from FALSE to TRUE (and forced to FALSE in all other
cases).

Reset boolVariable
-(R)-

The associated variable is forced to FALSE if the flow on the left is
TRUE.
No action if the rung state is FALSE.

Rules for Reset coil animation:

l If the Power Flow on left is TRUE:
l The horizontal lines are red.
l The variable above (R) is black.
l The R and the circle around the R are black.

l If the Power Flow on left is FALSE and variable above reset
coil is NOT Energized (OFF).
l The horizontal lines are black.
l The variable above (R) is black.
l The R and the circle around the R are black.

l If the Power Flow on left is FALSE and variable above reset
coil is Energized (ON).
l The horizontal lines are black.
l The variable above (R) is red.
l The R and the circle around the R are red.

Set boolVariable
-(S)-

The associated variable is forced to TRUE if the flow on the left is
TRUE.
No action if the flow is FALSE.

Rules for Set coil animation:

l If the Power Flow on left is TRUE:
l The horizontal wires on either side of the (S) are red.
l The variable and the (S) are red.

l If the Power Flow on left is FALSE and the (S) variable is
Energized (ON).
l The horizontal lines on either sided of (S) are black.
l The variable and the (S) are red.

l In all other cases:
l The horizontal wires are black.
l The variable and the (S) are black.

When a contact or coil is selected, press the Spacebar to change its type (e.g., normal, negated, etc.)
When the application is running, select a contact and press the Spacebar to swap its value between TRUE and
FALSE.

Although coils are commonly put at the end, the rung can be continued after a coil.
The flow is never changed by a coil symbol.

30 Kollmorgen® | kdn.kollmorgen.com | December 2024

2 PLC Advanced Libraries
These functions and function blocks perform advanced operations.

l "All Functions -
Alphabetical" (➜ p.
31)
l "Analog Signal
Processing" (➜ p.
32)

l "Alarm
Management" (➜
p. 32)

l "Communication"
(➜ p. 32)

l "Data Collections and
Serialization" (➜ p.
32)

l "Data Log" (➜ p. 32)
l "Special Operations"
(➜ p. 33)

2.1 All Functions - Alphabetical
Name Description

Alarm_A Alarm with automatic reset.

Alarm_M Alarm with manual reset.

ApplyRecipeColumn Apply the values of a column from a recipe file.

average / averageL Calculates the average of signal samples.

CurveLin Linear interpolation on a curve.

derivate Computes the derivative of a signal with respect to time.

FIFO Manages a first in / first out list.

FilterOrder1 First order filter.

hyster Hysteresis detection.

integral Calculates the integral of a signal with respect to time.

LIFO Manages a last in / first out list.

lim_alrm Detects high and low limits of a signal with hysteresis.

LogFileCSV Create a log file in CSV format for a list of variables.

PID PID loop.

PWM Generate a PWM signal.

RAMP Limit the ascendance or descendance of a signal.

rand Returns a pseudo-random integer value between 0 (zero) and (base - 1).

SD Card Mounting Functions Mounting an SD card.

SerializeIn Extract the value of a variable from a binary frame.

SerializeOut Copy the value of a variable to a binary frame.

SigID Get the identifier of a Signal resource.

SigPlay Generate a signal defined in a resource.

SigScale Get a point from a Signal resource.

stackint Manages a stack of DINT integers.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 31

KAS - PLC Library | 2 PLC Advanced Libraries

Name Description

SurfLin Linear interpolation on a surface.

VLID Gets the identifier (ID) of an embedded list of variables.

2.1.1 Alarm Management

Name Description

Alarm_A Alarm with automatic reset.

Alarm_M Alarm with manual reset.

lim_alrm Detects high and low limits of a signal with hysteresis.

2.1.2 Analog Signal Processing

Name Description

average / averageL Calculates the average of signal samples.

CurveLin Linear interpolation on a curve.

derivate Computes the derivative of a signal with respect to time.

hyster Hysteresis detection.

integral Calculates the integral of a signal with respect to time.

lim_alrm Detects high and low limits of a signal with hysteresis.

PID PID loop.

RAMP Limit the ascendance or descendance of a signal.

rand Returns a pseudo-random integer value between 0 (zero) and (base - 1).

SigPlay Generate a signal defined in a resource.

SigScale Get a point from a Signal resource.

SurfLin Linear interpolation on a surface.

2.1.3 Communication

l AS-interface Functions

2.1.4 Data Collections and Serialization

Name Description

FIFO Manages a first in / first out list.

LIFO Manages a last in / first out list.

SerializeIn Extract the value of a variable from a binary frame.

SerializeOut Copy the value of a variable to a binary frame.

stackint Manages a stack of DINT integers.

2.1.5 Data Log

32 Kollmorgen® | kdn.kollmorgen.com | December 2024

Name Description

LogFileCSV Create a log file in CSV format for a list of variables.

2.1.6 Special Operations

Name Description

ApplyRecipeColumn Apply the values of a column from a recipe file.

CycleStop Sets the application in cycle stepping mode.

EnableEvents Enable or disable the production of events for binding (runtime to runtime
variable exchange).

FatalStop Breaks the cycle and stop with fatal error.

FilterOrder1 First order filter.

GetSysInfo Get system information.

printf Display a trace output.

SigID Get the identifier of a Signal resource.

VLID Gets the identifier (ID) of an embedded list of variables.

2.2 AS-interface Functions
These functions enable special operation on AS-i networks:

Function Description

ASiReadPI Read actual parameters of an AS-i slave.

ASiReadPP Read permanent parameters of an AS-i slave.

ASiSendParam Send parameters to an AS-i slave.

ASiStorePI Store actual parameters as permanent parameters.

ASiWritePP Write permanent parameters of an AS-i slave.

AS-i networking may be not available on some targets.
See the OEM instructions for more information.

2.2.1 Interface

Params := ASiReadPP (Master, Slave);
bOK := ASiWritePP (Master, Slave, Params);
bOK := ASiSendParam (Master, Slave, Params);
Params := ASiReadPI (Master, Slave);
bOK := ASiStorePI (Master);

2.2.2 Arguments

Master : DINT Index of the AS-i master (1..N) such as shown in configuration.
Slave : DINT Address of the AS-i slave (1..32 / 33..63).

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 33

KAS - PLC Library | 2 PLC Advanced Libraries

Params : DINT Value of AS-i parameters.
bOK : BOOL TRUE if successful.

2.3 File Management
File Management functions provide the ability to:

l Read machine recipes or other machine operational data into the KAS program from the SD card, USB
flash drive, or a shared directory.

l Read cam tables into the program from the SD card, USB flash drive, or a shared directory.
l Store machine operational data on internal PxMM or PCMM2G flash memory (retrievable through the
Web server), the SD card, USB flash drive, or a shared directory.

A shared directory connection is setup through the Web server.

l Functions to parse out information from a file using a string format can be found in "String Operations"
(➜ p. 250).

l If the file is in a .CSV format, these functions can be used: "LogFileCSV" (➜ p. 74),
"ApplyRecipeColumn" (➜ p. 43).

l You can create, store, and retrieve recipes and other data using either:
l the AKI Terminals. For more information see the KVB manual.
l an external bus connection to the PxMM or PCMM2G with a supported fieldbus (e.g., UDP or
HTTP).

2.3.1 Sequential Read / Write Function Blocks
These function blocks enable sequential read / write operations in disk files:

Name Description

FileClose Closes an open file.

FileCopy Copies a file's contents to a new file.

FileDelete Removes a file from the file system.

FileEOF Test if the end of the file is reached in a file that is open for reading.

FileExists Tests if a file exists.

FileOpenA Create or open a file in append mode.

FileOpenR Open a file for reading.

FileOpenW Create or reset a file and open it for writing.

FileReadBinData Read binary data from a file.

FileReadLine Reads a string value from a text file.

FileRename Renames a file.

FileSeek Sets the current position in an open file.

FileSize Gets the size of a file.

FileWriteBinData Write binary data to a file.

FileWriteLine Writes a string value to a text file.

34 Kollmorgen® | kdn.kollmorgen.com | December 2024

2.3.2 SD card Functions
These functions handle mounting of SD cards:

Name Use

SD_ISREADY Verify the SD card is mounted.

SD_MOUNT Mount the SD card.

SD_UNMOUNT Unmount the SD card.

Each file is identified in the application by a unique handle manipulated as a DINT value.

l The file handles are allocated by the target system.
l Handles are returned by the Open function blocks and used by all other function blocks for identifying the
file.

2.3.2.1 Related Function Blocks
LogFileCSV log values of variables to a CSV file

l Files are opened and closed directly by the Operating System of the target.
l Opening some files can be dangerous for system safety and integrity.
l The number of open files (from FileOpenA, FileOpenR, and FileOpenW) is limited by the
resources available on the target system.

l Verify each file successfully opened using FileOpenA, FileOpenR, and FileOpenW.
l The FileOpenW has a corresponding FileClose to close the file.
l Closing the file releases the file ID, making it available for operations on other files.

l Opening a file with FileOpenA, FileOpenR, and FileOpenW can be unsuccessful (invalid path or file
name, too many open files.)

l Your application must check the file ID for a NULL value.
l If the file ID is NULL (zero), then file read or write operations will fail.

l File management may be unavailable on some targets.
l Memory on the SD card is available in addition to the existing flash memory.
l Valid paths for storing files depend on the target implementation.
l Error messages are logged in the Controller log section of KAS Runtime where there is a failure in any
related function block.

l Using the KAS Simulator, all path names are ignored, and files are stored in a reserved directory. Only
the file name passed to the Open functions is taken into account.

l AKD PDMM / PCMM files are big endian.
l PCMM2G files are little endian.

Review the "File Path Conventions" (➜ p. 36) to understand hardware-based functional differences.

2.3.3 SD Card Access
Files may be written to and read from an SD card. This is typically used for storing a firmware image for Recovery
Mode.

Use an SD card on the controller:

1. Verify the SD card is inserted.
2. Mount the card using "SD_MOUNT" (➜ p. 77).

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 35

../../../../../Content/11.TechRefs/System/File/FileOpenA.htm#F_AOPEN
../../../../../Content/11.TechRefs/System/File/FileOpenR.htm#F_ROPEN2
../../../../../Content/11.TechRefs/System/File/FileOpenW.htm#F_WOPEN
../../../../../Content/11.TechRefs/System/File/FileClose.htm#F_CLOSE
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

KAS - PLC Library | 2 PLC Advanced Libraries

3. Verify the card is accessible using "SD_ISREADY" (➜ p. 76) before performing a read or write action.
4. Unmount the card, using "SD_UNMOUNT" (➜ p. 77) after performing read / write actions.

SD Card is not supported by PCMM2G.

Recommended: Stop all motion before using SD_MOUNT and SD_UNMOUNT.

2.3.4 File Path Conventions
Depending on the system used, paths to file locations may be defined as either:

l Absolute (C://dir1/file1)
l Relative (/dir1/file1)

Not all systems handle all options.

The paths vary depending upon the system.

System Absolute
Paths

Relative
Paths Handling of Directories

AKD PDMM
PCMM
PCMM2G

There is no support for creating directories on the controller.
Any path provided to the function blocks (e.g., file1) is
appended to the default user data folder.
User Data Folders

l PCMM & AKD PDMM: /mount/flash/userdata/
l PCMM2G: /home/kas/kas/userdata/

Simulator When a relative path is provided to the function blocks, the path
is appended to the default user data folder:

<User Directory>/Kollmorgen/Kollmorgen
Automation
Suite/SinopeSimulator/Application/userdat
a/

See Also

l "File NameWarning and Limitations" (➜ p. 36)
l "SD Card Path Conventions" (➜ p. 37)
l "Shared Directory Path Conventions" (➜ p. 37)
l "USB Flash Drive Path Conventions" (➜ p. 38)

2.3.4.1 File Name Warning and Limitations

l File names in the controller's flash storage are case-sensitive.
l The SD card or USB flash drive (FAT16 or FAT32) are not case-sensitive.

Product Storage File System Case-Sensitive

AKD PDMM
PCMM
PCMM2G

Embedded Flash FFS3 (POSIX-like) Yes

36 Kollmorgen® | kdn.kollmorgen.com | December 2024

Product Storage File System Case-Sensitive

AKD PDMM
PCMM

SD card / USB flash drive FAT16
FAT32

No

Example

l Two files (MyFile.txt and myfile.txt) can exist in the same directory of the controller's flash.
l They cannot exist in the same directory on the controller’s SD card.

l If you copy two files (via backup operation or function) with the same name but different upper/lower case
letters, from the controller's flash to the SD card or USB flash drive, one of the files is lost.

Use unique file names to prevent conflicts and to keep the application compatible across all platforms.
Do not rely on case-sensitive file names.

See Also

l "SD Card Path Conventions" (➜ p. 37)
l "Shared Directory Path Conventions" (➜ p. 37)
l "USB Flash Drive Path Conventions" (➜ p. 38)

2.3.4.2 Shared Directory Path Conventions
The controllers support access to a shared directory on a remote computer.

To access files in a shared directory from the controller, use /mount/shared at the beginning of the path,
before the shared directory's relative path and file name:

/mount/shared/directory/filename

Valid Paths Notes
/mount/shared
mount/shared
\mount\shared
mount\shared

l The path is not case sensitive.
l The /MOUNT/SHARED, MOUNT/SHARED/, etc. are also valid.

Example 1

Opening the file example.txt from a shared directory on a remote computer.

fileID := Inst_FileOpenA(TRUE,'/mount/shared/example.txt');

Example 2

Opening the file myfiles/example.txt from a shared directory on a remote computer.

fileID := Inst_FileOpenA(TRUE,'/mount/shared/myfiles/example.txt');

See Also

l "File NameWarning and Limitations" (➜ p. 36)
l "SD Card Path Conventions" (➜ p. 37)
l "USB Flash Drive Path Conventions" (➜ p. 38)

2.3.4.3 SD Card Path Conventions

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 37

KAS - PLC Library | 2 PLC Advanced Libraries

Access to the SD card memory requires that a valid SD card label be used at the beginning of the path followed
by the relative path to the SD card.

(Valid SD Card Label)/(Relative Path)

l A valid SD card relative path starts with //, /, \\, or \.
l This is immediately followed by SDCard which is followed by \ or /.
l This path label is case insensitive.

The SDCard folder is created inside the userdata folder to maintain compatibility with the Simulator.

File access points to userdata/SDCard when a AKD PDMM SDCard path is used on the Simulator.

2.3.4.3.1 Valid Paths

Valid Paths Notes

//SDCard/file1

\Sdcard/dir1/file1 dir1 must have been already created.

/sdcard/dir1/file1 dir1 must have been already created.

//sdCard\file1

2.3.4.3.2 Invalid Paths

Invalid Paths Invalid Reason

///SDCard/file1 Started with more than two forward or two backward slashes.

/\Sdcard/dir1/file1 Started with one forward and one backward slash.

/sdcarddir1/file1 No forward or backward slash.

/sdcard1/dir1/file1 Invalid label.

See Also

l "File NameWarning and Limitations" (➜ p. 36)
l "Shared Directory Path Conventions" (➜ p. 37)
l "USB Flash Drive Path Conventions" (➜ p. 38)

2.3.4.4 USB Flash Drive Path Conventions
Access to the USB flash drive memory requires that a valid USB flash drive label be used at the beginning of the
path, followed by the relative path to the USB flash drive.

(Valid USB Flash Drive Label)/(Relative Path)

l A valid USB flash drive relative path starts with //, /, \\, or \.
l This is immediately followed by usbflash which is followed by \ or /.
l This path label is case insensitive.

The usbflash folder is created inside the userdata folder to maintain compatibility with the Simulator.

File access points to userdata/usbflash when a PCMM2G usbflash path is used on the Simulator.

2.3.4.4.1.1 Valid Paths

38 Kollmorgen® | kdn.kollmorgen.com | December 2024

Valid Paths Notes

//usbflash/file1

\usbflash/dir1/file1 dir1 must have been already created.

/usbflash/dir1/file1 dir1 must have been already created.

//usbflash\file1

2.3.4.4.2.2 Invalid Paths

Invalid Paths Invalid Reason

///usbflash/file1 Started with more than two forward or two backward slashes.

/\usbflash/dir1/file1 Started with one forward and one backward slash.

/usbflashdir1/file1 No forward or backward slash.

/ubflash1/dir1/file1 Invalid label.

See Also

l "File NameWarning and Limitations" (➜ p. 36)
l "SD Card Path Conventions" (➜ p. 37)
l "Shared Directory Path Conventions" (➜ p. 37)

2.4 PLC Advanced - Advanced

These are the PLC Advanced functions:

Name Description

Alarm_A Alarm with automatic reset.

Alarm_M Alarm with manual reset.

ApplyRecipeColumn Apply the values of a column from a recipe file.

average / averageL Calculates the average of signal samples.

CurveLin Linear interpolation on a curve.

derivate Computes the derivative of a signal with respect to time.

FIFO Manages a first in / first out list.

FilterOrder1 First order filter.

hyster Hysteresis detection.

integral Calculates the integral of a signal with respect to time.

LIFO Manages a last in / first out list.

lim_alrm Detects high and low limits of a signal with hysteresis.

PWM Generate a PWM signal.

RAMP Limit the ascendance or descendance of a signal.

rand Returns a pseudo-random integer value between 0 (zero) and (base - 1).

SerializeIn Extract the value of a variable from a binary frame.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 39

KAS - PLC Library | 2 PLC Advanced Libraries

Name Description

SerializeOut Copy the value of a variable to a binary frame.

SigID Get the identifier of a Signal resource.

SigPlay Generate a signal defined in a resource.

SigScale Get a point from a Signal resource.

stackint Manages a stack of DINT integers.

SurfLin Linear interpolation on a surface.

VLID Gets the identifier (ID) of an embedded list of variables.

2.4.1 Alarm_A

Function Block - Alarm with automatic reset.

Inputs
Input Data Type Range Unit Default Description

ACK BOOL Acknowledge command.

IN BOOL Process signal.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if alarm is active.

QACK BOOL TRUE if alarm is acknowledged.

Remarks
l Combine this block with the lim_alrm block for managing analog alarms.

2.4.1.0.1 Sequence

FBD Language Example

40 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example

IL Language Example

(* MyALARM is declared as an instance of ALARM_A function block *)
Op1: CAL
MyALARM (IN, ACK)
FFLD MyALARM.Q
ST Q
FFLD MyALARM.QACK
ST
QACK

ST Language Example

(* MyALARM is declared as an instance of ALARM_A function block *)
MyALARM (IN, ACK, RST);
Q := MyALARM.Q;
QACK := MyALARM.QACK;

See Also

Alarm_M

2.4.2 Alarm_M

Function Block - Alarm with manual reset.

Inputs
Input Data Type Range Unit Default Description

IN BOOL Process signal.

ACK BOOL Acknowledge command.

RST BOOL Reset command.

Outputs

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 41

KAS - PLC Library | 2 PLC Advanced Libraries

Output Data Type Range Unit Description

Q BOOL TRUE if alarm is active.

QACK BOOL TRUE if alarm is acknowledged.

Remarks
l Combine this block with the lim_alrm block for managing analog alarms.

2.4.2.0.1 Sequence

FBD Language Example

FFLD Language Example

IL Language Example

(*MyALARM is declared as an instance of ALARM_M function block*)
Op1: CAL
MyALARM (IN, ACK, RST)
FFLD MyALARM.Q
ST Q
FFLD MyALARM.QACK
ST
QACK

ST Language Example

(* MyALARM is declared as an instance of ALARM_M function block *)
MyALARM (IN, ACK, RST);

42 Kollmorgen® | kdn.kollmorgen.com | December 2024

Q := MyALARM.Q;
QACK := MyALARM.QACK;

See Also

Alarm_A

2.4.3 ApplyRecipeColumn

Function - Apply the values of a column from a recipe file.

Inputs
Input Data Type Range Unit Default Description

FILE STRING Path name of the recipe file (.CSV or .RCP).
Must be a constant value.

COL DINT Index of the column in the recipe (0 (zero) based).

Outputs
Output Data Type Range Unit Description

OK BOOL l TRUE if OK.
l FALSE if parameters are invalid.

Remarks
l The FILE input is a constant string expression specifying the path name of a valid .CSV or .RCP file.

l If no path is specified, the file is assumed to be located in the project folder.
l CSV files are created using Excel or Notepad.
l RCP files are created using an external recipe editor.

l In CSV files, the first line must contain column headers, and is ignored during compiling.
l There is one variable per line.
l The first column contains the symbol of the variable.

l Other columns are values.
l If a cell is empty, it is assumed to be the same value as the previous (left side) cell.

l If it is the first cell of a row, it is assumed to be null (0 or FALSE or empty string).

Example of CSV File

Example of CSV file with five variables and five set of values

comment lines here

TravelSpeed;100;200;300;400;500

MasterAbsPos;0;45;90;135;180

MasterDeltaPos;0;90;180;270;360

MachineSpeed;50;100;150;200;250

MachineState;0;0;1;1;2

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 43

KAS - PLC Library | 2 PLC Advanced Libraries

For the CSV file to be valid, ensure the data are separated with semicolons (NOT commas).

Usage in an FFLD program where column 3 is selected.

Column 3 corresponds to column E in the Excel sheet because this parameter is 0 based.

Result displayed in the Dictionary when the application is running.

Example of RCP File

@COLNAME=Col3 Col4

@SIZECOL1=100

@SIZECOL2=100

@SIZECOL3=100

@SIZECOL4=100

bCommand

tPerio

bFast

Blink1

test_var

bOut

@EXPANDED=Blink1

Recipe files are read at compiling time and are embedded into the downloaded application code.
This implies that a modification performed in the recipe file after downloading is not taken into account by the
application.

FBD Language Example

44 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung is the result of the function.
l The function is executed only if ApplyRecipe is TRUE.

IL Language Example

Op1: LD
'MyFile.rcp'
ApplyRecipeColumn COL
ST
OK

ST Language Example

OK := ApplyRecipeColumn ('MyFile.rcp', COL);

2.4.4 average / averageL

Function Block - Calculates the average of signal samples.

Inputs
Input Data Type Range Unit Default Description

RUN BOOL Enabling command.

XIN REAL Input signal.

N DINT l Number of samples stored for average calculation.
l Cannot exceed 128.

Outputs

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 45

KAS - PLC Library | 2 PLC Advanced Libraries

Output Data Type Range Unit Description

XOUT REAL l Average of the stored samples.
l averageL has LREAL arguments.

Remarks
l Average is calculated according to the number of stored samples.

l This can be less than N when the block is enabled.
l The N input (or the number of samples) is taken into account only when the RUN input is
FALSE.

l By default, the number of samples is 128.
l RUNmust be reset after a change in the number of samples.

l Cycle the RUN input when you first call this function; this clears the default.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the RUN command.

l The output rung keeps the state of the input rung.
l ENO has the same value as RUN.

IL Language Example

(* MyAve is a declared instance of AVERAGE function block *)
Op1: CAL MyAve (RUN, XIN, N)

FFLD MyAve.XOUT
ST XOUT

ST Language Example

(* MyAve is a declared instance of AVERAGE function block. *)
MyAve (RUN, XIN, N);
XOUT := MyAve.XOUT;

See Also

l derivate
l hyster
l integral

46 Kollmorgen® | kdn.kollmorgen.com | December 2024

l lim_alrm
l stackint

2.4.5 CurveLin

Function Block - Linear interpolation on a curve.

Inputs
Input Data Type Range Unit Default Description

X REAL X coordinate of the point to be interpolated.

XAxis REAL[] X coordinates of the known points of the X axis.

YVal REAL[] Y coordinate of the points defined on the X axis.

Outputs
Output Data Type Range Unit Description

ERR DINT l Error code if failed.
l 0 (zero) if OK.

OK BOOL TRUE if successful.

Y REAL Interpolated Y value corresponding to the X input.

Remarks
l This function performs linear interpolation in between a list of points defined in the XAxis single dimension
array.

l The output Y value is an interpolation of the Y values of the two rounding points defined in the X
axis.

l Y values of defined points are passed in the YVal single dimension array.
l Values in XAxis must be sorted from the smallest to the biggest.

l There must be at least two points defined in the X axis.
l YVal and XAxis input arrays must have the same dimension.

l If the X input is less than the smallest defined X point:
l The Y output takes the first value defined in YVal.
l An error is reported.

l If the X input is greater than the biggest defined X point:
l The Y output takes the last value defined in YVal.
l An error is reported.

If the function fails, the ERR output gives the cause of the error:

Error Code Meaning

0 OK

1 Invalid dimension of input arrays

2 Invalid points for the X axis

4 X is out of the defined X axis

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 47

KAS - PLC Library | 2 PLC Advanced Libraries

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example
Not available.

2.4.6 derivate

Function Block - Computes the derivative of a signal with respect to time.

Inputs
Input Data Type Range Unit Default Description

RUN BOOL FALSE, TRUE Run command:

l TRUE=derivate.
l FALSE=hold.

XIN REAL Input signal.

CYCLE TIME Sampling period.
Must not be less than the target cycle timing.

Outputs
Output Data Type Range Unit Description

XOUT REAL Output signal.

Remarks
l The time unit is seconds.
l The output signal has the units of the input signal divided by seconds.
l The derivate block samples the input signal at a maximum rate of 1 millisecond.

FBD Language Example

48 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the input rung is the RUN command.

l The output rung keeps the state of the input rung.
l ENO has the same state as RUN.

IL Language Example

(* MyDerv is a declared instance of DERIVATE function block *)
Op1: CAL MyDerv (RUN, XIN, CYCLE)
FFLD MyDerv.XOUT
ST XOUT

ST Language Example

(* MyDerv is a declared instance of DERIVATE function block. *)
MyDerv (RUN, XIN, CYCLE);
XOUT := MyDerv.XOUT;

See Also

l average / averageL
l hyster
l integral
l lim_alrm
l stackint

2.4.7 FIFO

Function Block - Manages a first in / first out list.

Inputs
Inputs Data Type Range Unit Default Description

@Tail ANY Value of the oldest pushed value.
Updated after call.

Buf[] ANY Array for storing values.

IN ANY Value to be pushed.

POP BOOL Pop a new value on the rising edge.

PUSH BOOL Push a new value on the rising edge.

RST BOOL Reset the list.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 49

KAS - PLC Library | 2 PLC Advanced Libraries

Outputs
Outputs Data Type Range Unit Description

EMPTY BOOL TRUE if the list is empty.

OFLO BOOL TRUE if the overflow is on a PUSH
command.

Count DINT Number of values in the list.

pRead DINT Index in the buffer of the oldest pushed
value.

pWrite DINT Index in the buffer of the next push position.

Remarks
l IN, @Tail, and Buf[] must have the same data type.

l It cannot be a STRING.
l The@Tail argument specifies a variable filled with the oldest push value after the block is called.
l Values are stored in the Buf[] array.

l Data is arranged as a roll over buffer and is never shifted or reset.
l Only read and write pointers and pushed values are updated.
l The maximum size of the list is the dimension of the array.

l The first time an instance of the FIFO function block is called, that instance stores which array is passed to
BUF[].

l If a later call to the same instance passes a different array for the BUF[] argument, the call is
considered invalid and no action is performed.

l In this instance, the EMPTY output returns TRUE.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the PUSH input.

l The output rung is the EMPTY output.

IL Language Example

50 Kollmorgen® | kdn.kollmorgen.com | December 2024

(* MyFIFO is a declared instance of FIFO function block *)
Op1: CAL MyFIFO (PUSH, POP, RST, IN, @Tail , BUFF[])
FFLD MyFIFO.EMPTY
ST EMPTY
FFLD MyFIFO.OFLO
ST OFLO
FFLD MyFIFO.COUNT
ST COUNT
FFLD MyFIFO.PREAD
ST PREAD
FFLD MyFIFO.PWRITE
ST PWRITE

ST Language Example

(* MyFIFO is a declared instance of FIFO function block: *)
MyFIFO (PUSH, POP, RST, IN, @Tail , BUFFER);
EMPTY := MyFIFO.EMPTY;
OFLO := MyFIFO.OFLO;
COUNT := MyFIFO.COUNT;
PREAD := MyFIFO.PREAD;
PWRITE := MyFIFO.PWRITE;

See Also

LIFO

2.4.8 FilterOrder1

Function Block - First order filter.

Inputs
Input Data Type Range Unit Default Description

XIN REAL Input analog value.

GAIN REAL Transformation gain.

Outputs
Output Data Type Range Unit Description

XOUT REAL Output signal.

Remarks
The operation performed is:

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 51

KAS - PLC Library | 2 PLC Advanced Libraries

Output = (Input x Gain) + (OutputPrev * (1-Gain))

The allowed range for the gain is [0.05 .. 1.0]

2.4.8.0.1 Example

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example
Filt1 is a declared instance of FilterOrder1 function block.

Filt1 (rIn, rGain);
Signal := Fillt1.Xout;

2.4.9 hyster

Function Block - Hysteresis detection.

Inputs
Input Data Type Range Unit Default Description

XIN1 REAL First input.

XIN2 REAL Second input.

EPS REAL Hysteresis.

52 Kollmorgen® | kdn.kollmorgen.com | December 2024

Outputs
Output Data

Type Range Unit Description

Q BOOL Detected hysteresis:
TRUE if XIN1 becomes greater than XIN2+EPS and is not yet below
XIN2-EPS.

Remarks
l The hysteresis is detected on the difference of XIN1 and XIN2 signals.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) is used for enabling the block.

l The output rung is the Q output.
l The block is not called if EN is FALSE.

IL Language Example

(* MyHyst is a declared instance of HYSTER function block *)
Op1: CAL MyHyst (XIN1, XIN2, EPS)
FFLD MyHyst.Q
ST Q

ST Language Example

(* MyHyst is a declared instance of HYSTER function block. *)
MyHyst (XIN1, XIN2, EPS);
Q := MyHyst.Q;

See Also

l average / averageL
l derivate
l integral

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 53

KAS - PLC Library | 2 PLC Advanced Libraries

l lim_alrm
l stackint

2.4.10 integral

Function Block - Calculates the integral of a signal with respect to time.

Inputs
Input Data Type Range Unit Default Description

CYCLE TIME Sampling period.
Must not be less than the target cycle timing.

R1 BOOL Overriding reset.

RUN BOOL Run command:

l TRUE = integrate.
l FALSE = hold.

X0 REAL Initial value.

XIN REAL Input signal.

Outputs
Output Data Type Range Unit Description

Q DINT Running mode report: NOT (R1).

XOUT REAL Output signal.

Remarks
l The time unit is seconds.
l The output signal has the units of the input signal multiplied by seconds.
l The integral block samples the input signal at a maximum rate of 1 millisecond.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the RUN command.

l The output rung is the Q report status.

54 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example

(* MyIntg is a declared instance of INTEGRAL function block. *)
Op1: CAL MyIntg (RUN, R1, XIN, X0, CYCLE)

FFLD MyIntg.Q
ST Q
FFLD MyIntg.XOUT
ST XOUT

ST Language Example

(* MyIntg is a declared instance of INTEGRAL function block. *)
MyIntg (RUN, R1, XIN, X0, CYCLE);
Q := MyIntg.Q;
XOUT := MyIntg.XOUT;

See Also

l "average / averageL" (➜ p. 45)
l "derivate" (➜ p. 48)
l "hyster" (➜ p. 52)
l "lim_alrm" (➜ p. 57)
l stackint

2.4.11 LIFO

Function Block - Manages a last in / first out list.

Inputs
Inputs Data Type Range Unit Default Description

BUFFER ANY Array for storing values.

NEXTOUT ANY Value at the top of the stack.
Updated after call.

NEXTIN ANY Value to be pushed.

POP BOOL Pop a new value on the rising edge.

PUSH BOOL Push a new value on the rising edge.

RST BOOL Reset the list.

Outputs

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 55

KAS - PLC Library | 2 PLC Advanced Libraries

Outputs Data Type Range Unit Description

EMPTY BOOL TRUE if the list is empty.

OFLO BOOL TRUE if the overflow is on a PUSH
command.

Count DINT Number of values in the list.

pRead DINT Index in the buffer of the top of the stack.

pWrite DINT Index in the buffer of the next push position.

Remarks
l NEXTIN, NEXTOUT, and BUFFER must have the same data type.

l It cannot be a STRING.
l The NEXTOUT argument specifies a variable filled with the value at the top of the stack after the block is
called.

l Values are stored in the BUFFER array.
l Data is never shifted or reset.
l Only read and write pointers and pushed values are updated.
l The maximum size of the stack is the dimension of the array.

l The first time an instance of the LIFO function block is called, that instance stores which array is passed to
BUFFER.

l If a later call to the same instance passes a different array for the BUFFER argument, the call is
considered invalid and no action is performed.

l The EMPTY output returns TRUE in this case.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the PUSH input.

l The output rung is the EMPTY output.

IL Language Example

56 Kollmorgen® | kdn.kollmorgen.com | December 2024

(* MyLIFO is a declared instance of LIFO function block *)
Op1: CAL MyLIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER)
FFLD MyLIFO.EMPTY
ST EMPTY
FFLD MyLIFO.OFLO
ST OFLO
FFLD MyLIFO.COUNT
ST COUNT
FFLD MyLIFO.PREAD
ST PREAD
FFLD MyLIFO.PWRITE
ST PWRITE

ST Language Example

(* MyLIFO is a declared instance of LIFO function block. *)
MyLIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER);
EMPTY := MyLIFO.EMPTY;
OFLO := MyLIFO.OFLO;
COUNT := MyLIFO.COUNT;
PREAD := MyLIFO.PREAD;
PWRITE := MyLIFO.PWRITE;

See Also

FIFO

2.4.12 lim_alrm

Function Block - Detects high and low limits of a signal with hysteresis.

Inputs
Input Data Type Range Unit Default Description

EPS REAL Value of the hysteresis.

H REAL Value of the high limit.

L REAL Value of the low limit.

X REAL Input signal.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if the signal exceeds one of the limits.
Equals to QH OR QL.

QH BOOL TRUE if the signal exceeds the high limit.

QL BOOL TRUE if the signal exceeds the low limit.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 57

KAS - PLC Library | 2 PLC Advanced Libraries

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) is used for enabling the block.

l The output rung is the QH output.
l The block is not called if EN is FALSE.

IL Language Example

(* MyAlarm is a declared instance of LIM_ALRM function block *)
Op1: CAL MyAlarm (H, X, L, EPS)

FFLD MyAlarm.QH
ST QH
FFLD MyAlarm.Q
ST Q
FFLD MyAlarm.QL
ST QL

ST Language Example

(* MyAlarm is a declared instance of LIM_ALRM function block *)
MyAlarm (H, X, L, EPS);
QH := MyAlarm.QH;
Q := MyAlarm.Q;
QL := MyAlarm.QL;

See Also

l Alarm_A

l Alarm_M

2.4.13 PWM

58 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function Block - Generate a PWM signal.

Inputs
Input Data Type Range Unit Default Description

XIN REAL Input analog value.

XinMin REAL Minimum input value.

XinMax REAL Maximum input value.

MinPulse TIME Minimum pulse time on output.

Period TIME Period of the output signal.

Outputs
Output Data Type Range Unit Description

Q BOOL Blinking PWM signal.

Remarks
l The input value is truncated to [XinMin .. XinMax] interval.

l XinMax must be greater than XinMin.

l The signal is TRUE during:

(Xin - XinMin) * Period / (XinMax - XinMin)

FBD Language Example

FFLD Language Example
Not available.

IL Language Example

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 59

KAS - PLC Library | 2 PLC Advanced Libraries

Not available.

ST Language Example
PWM1 is a declared instance of PWM function block.

PWM1 (rIn, rInMin, rInMax, tMinPulse, tPeriod);
Signal := PWM1.Q;

2.4.14 RAMP

Function - Limit the ascendance or descendance of a signal.

Inputs
Input Data Type Range Unit Default Description

IN REAL Input signal.

ASC REAL Maximum ascendance during time base.

DSC REAL Maximum descendant during time base.

TM TIME Time base.

RST BOOL Reset.

Outputs
Output Data Type Range Unit Description

OUT REAL Ramp signal.

Remarks
l Parameters are not updated constantly.

l They are taken into account only when the:
l The block is called the first time.
l Reset input (RST) is TRUE.

l In these two situations, the output is set to the value of IN input.
l ASC and DSC give the maximum ascendant and descendant growth during the TB time base.

l Both must be expressed as positive numbers.

Time Diagram

60 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example

(* MyRamp is a declared instance of RAMP function block *)
Op1: CAL
MyRamp (IN, ASC, DSC, TM, RST)
FFLD MyBlinker.OUT
ST OUT

ST Language Example

(* MyRamp is a declared instance of RAMP function block *)
MyRamp (IN, ASC, DSC, TM, RST);
OUT := MyBlinker.OUT;

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 61

KAS - PLC Library | 2 PLC Advanced Libraries

2.4.15 rand

Function Block - Returns a pseudo-random integer value between 0 (zero) and (base - 1).

Inputs
Input Data

Type Range Unit Default Description

base DINT 1 to
2147483647

N/A No default The number of possible outcomes.
Example: When base is 5, there are 5 possible
outcomes: 0,1,2,3,4.

Outputs
Output Data Type Range Unit Description

Return Value DINT 0 (zero) to (base - 1) N/A The generated pseudo-random number.

Remarks
l rand uses a fast high-quality number generation algorithm.

l The algorithm is not cryptographically secure.
l It is sufficient where security is not a concern.

l There is no way to seed the random number generator.
l On first use, the random number generated is seeded by time.
l While unlikely, it is possible to receive the same pattern of generated numbers after the controller
reboots.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

dieValue := 1 + rand(6);

2.4.16 SerializeIn

62 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function - Extract the value of a variable from a binary frame.

Inputs
Input Data

Type Range Unit Default Description

En BOOL 0 to 1 N/A No default Execute the function.

Frame[] USINT 0,+65535 N/A N/A l Source buffer.
l Must be an array.

Data ANY(*) No range N/A No default Destination variable to be copied.

Pos DINT 0,+65535 N/A N/A Position in the source buffer.

BigEndian BOOL 0 to 1 N/A No default TRUE if the frame is encoded with Big Endian
format.

(*) DATA cannot be a STRING.

Outputs
Output Data Type Range Unit Description

OK BOOL N/A Returns TRUE when the function successfully executes.

NextPos DINT N/A l Position in the source buffer after the copied data.
l 0 (zero) in case of error (e.g., invalid position or buffer size).

Remarks
l Used to extract data from a communication frame in binary format.
l This function cannot be used to serialize STRING variables.
l The DATA input must be directly connected to a variable.

l It cannot be a constant or complex expression.
l This variable is forced with the extracted value.

l The FRAME input must fit the input position and data size.
l If the value cannot be safely extracted, the function returns 0 (zero).

l The function returns the position in the source frame after the extracted data.
l The return value can be used as a position for the next serialization.

This function extracts these number of bytes from the source frame:

Bytes Description
1 byte BOOL, BYTE, SINT, and USINT variables.

2 bytes INT, UINT, and WORD variables.

4 bytes DINT, DWORD, REAL, and UDINT variables.

8 bytes LINT and LREAL variables.

FBD Language Example

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 63

KAS - PLC Library | 2 PLC Advanced Libraries

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
Not available.

ST Language Example

Q := SERIALIZEIN (FRAME, DATA, POS, BIGENDIAN);

See Also

"SerializeOut" (➜ p. 64)

2.4.17 SerializeOut

Function - Copy the value of a variable to a binary frame.

Inputs
Input Data

Type Range Unit Default Description

En BOOL 0 to 1 N/A No default Execute the function.

Frame[] USINT 0,+65535 N/A N/A l Destination buffer.
l Must be an array.

Data ANY(*) No range N/A No default Source variable to be copied.

Pos DINT 0,+65535 N/A N/A Position in the destination buffer.

BigEndian BOOL 0 to 1 N/A No default TRUE if the frame is encoded with Big Endian
format.

(*) DATA cannot be a STRING.

Outputs
Output Data Type Range Unit Description

OK BOOL N/A Returns TRUE when the function successfully executes.

NextPos DINT N/A l Position in the destination buffer after the copied data.
l 0 (zero) in case of error (e.g., invalid position or buffer size).

64 Kollmorgen® | kdn.kollmorgen.com | December 2024

Remarks
l Used to build a communication frame in binary format.
l This function cannot be used to serialize STRING variables.
l The FRAME input must be an array large enough to receive the data.

l If the data cannot be safely copied to the destination buffer, the function returns 0 (zero).
l The function returns the position in the destination frame after the copied data.

l The return value can be used as a position for the next serialization.

This function copies these number of bytes to the destination frame:

Bytes Description
1 byte BOOL, BYTE, SINT, and USINT variables.

2 bytes INT, UINT, and WORD variables.

4 bytes DINT, DWORD, REAL, and UDINT variables.

8 bytes LINT and LREAL variables.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
Not available.

ST Language Example

Q := SERIALIZEOUT (FRAME, DATA, POS, BIGENDIAN);

See Also

"SerializeIn" (➜ p. 62)

2.4.18 SigID

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 65

KAS - PLC Library | 2 PLC Advanced Libraries

Function - Get the identifier of a Signal resource.

Inputs
Input Data Type Range Unit Default Description

SIGNAL STRING Name of the signal resource.
Must be a constant value.

COL STRING Name of the column within the signal resource.
Must be a constant value.

Outputs
Output Data Type Range Unit Description

ID DINT ID of the signal to be passed to other blocks.

Remarks
l Some blocks have arguments that refer to a signal resource.

l For all these blocks, the signal argument is materialized by a numerical identifier.

FBD Language Example

FFLD Language Example

IL Language Example

Op1: LD 'MySignal'
 SigID 'FirstColumn'
 ST ID

ST Language Example

ID := SigID ('MySignal', 'FirstColumn');

See Also

l "SigPlay" (➜ p. 67)
l "SigScale" (➜ p. 68)

66 Kollmorgen® | kdn.kollmorgen.com | December 2024

2.4.19 SigPlay

Function Block - Generate a signal defined in a resource.

Inputs
Input Data

Type Range Unit Default Description

IN BOOL Triggering command.

ID DINT ID of the signal resource, provided by the "SigID" (➜ p. 65)
function.

RST BOOL Reset command.

TM TIME Minimum duration between two changes of the output.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE when the signal is finished.

OUT REAL Generated signal.

ET TIME Elapsed time.

Remarks
l The ID argument is the identifier of the signal resource.

l Use the "SigID" (➜ p. 65) function to get this value.
l The IN argument is used as a Play / Pause command to play the signal.

l The signal is not reset to the beginning when IN becomes FALSE.
l Instead, use the RST input that resets the signal and forces the OUT output to 0 (zero).

l The TM input specifies the minimum amount of time in between two changes of the output signal.
l This parameter is ignored if less than the cycle scan time.

l This function block includes its own timer.
l Alternatively, use the "SigScale" (➜ p. 68) function if you want to trigger the signal using a specific
timer.

FBD Language Example

FFLD Language Example

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 67

KAS - PLC Library | 2 PLC Advanced Libraries

IL Language Example

Op1: FFLD IN
SigScale ID
ST Q

ST Language Example

MySig (II, ID, RST, TM);
Q := MySig.Q;
OUT := MySig.OUT;
ET := MySig.ET;

See Also

l "SigID" (➜ p. 65)
l "SigScale" (➜ p. 68)

2.4.20 SigScale

Function - Get a point from a Signal resource.

Inputs
Input Data

Type Range Unit Default Description

ID DINT ID of the signal resource, provided by the "SigID" (➜ p. 65)
function.

TIME TIME Time (X) coordinate of the point within the signal resource.

Outputs
Output Data Type Range Unit Description

Q REAL Value (Y) coordinate of the point in the signal.

Remarks
l The ID argument is the identifier of the signal resource.

l Use the "SigID" (➜ p. 65) function to get this value.

68 Kollmorgen® | kdn.kollmorgen.com | December 2024

l This function:
l Converts a time value to an analog value as defined in the signal resource.
l Can be used instead of the "SigPlay" (➜ p. 67) function block to trigger the signal using a specific
timer.

FBD Language Example

FFLD Language Example

IL Language Example

Op1: LD IN
SigScale ID
ST Q

ST Language Example

Q := SigScale (ID, IN);

See Also

l "SigID" (➜ p. 65)
l "SigPlay" (➜ p. 67)

2.4.21 stackint

Function Block - Manages a stack of DINT integers.

Inputs
Input Data

Type Range Unit Default Description

PUSH BOOL Command:
When changing from FALSE to TRUE, the value of IN is
pushed on the stack.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 69

KAS - PLC Library | 2 PLC Advanced Libraries

Input Data
Type Range Unit Default Description

POP BOOL Pop command:
When changing from FALSE to TRUE, deletes the top of the
stack.

R1 BOOL Reset command:
If TRUE, the stack is emptied and its size is set to N.

IN DINT Value to be pushed on a rising pulse of PUSH.

N DINT Maximum stack size.
Cannot exceed 128.

Outputs
Output Data Type Range Unit Description

EMPTY BOOL TRUE if the stack is empty.

OFLO BOOL TRUE if the stack is full.

OUT DINT Value at the top of the stack.

Remarks
l Push and pop operations are performed on rising pulse of PUSH and POP inputs.
l The specified size (N) is taken into account only when the R1 (reset) input is TRUE.

FBD Language Example

FFLD Language Example
l In the FFLD language, the input rung is the PUSH command.

l The output rung is the EMPTY output.

IL Language Example

(* MyStack is a declared instance of STACKINT function block *)
Op1: CAL MyStack (PUSH, POP, R1, IN, N)
 FFLD MyStack.EMPTY
 ST EMPTY

70 Kollmorgen® | kdn.kollmorgen.com | December 2024

 FFLD MyStack.OFLO
 ST OFLO
 FFLD MyStack.OUT
 ST OUT

ST Language Example

(* MyStack is a declared instance of STACKINT function block *)
MyStack (PUSH, POP, R1, IN, N);
EMPTY := MyStack.EMPTY;
OFLO := MyStack.OFLO;
OUT := MyStack.OUT;

See Also

l "average / averageL" (➜ p. 45)
l "derivate" (➜ p. 48)
l "hyster" (➜ p. 52)
l "integral" (➜ p. 54)
l "lim_alrm" (➜ p. 57)

2.4.22 SurfLin

Function Block - Linear interpolation on a surface.

Inputs
Input Data Type Range Unit Default Description

X REAL X coordinate of the point to be interpolated.

XAxis REAL[] X coordinates of the known points of the X axis.

Y REAL Y coordinate of the point to be interpolated.

YAxis REAL[] Y coordinates of the known points of the Y axis.

ZVal REAL[] Z coordinate of the points defined by the axis.

Outputs
Output Data Type Range Unit Description

ERR DINT l Error code if failed.
l 0 (zero) if OK.

OK BOOL TRUE if successful.

Z REAL Interpolated Z value corresponding to the X,Y input point.

Remarks
This function performs linear surface interpolation in between a list of points defined in XAxis and YAxis single
dimension arrays.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 71

KAS - PLC Library | 2 PLC Advanced Libraries

l The output Z value is an interpolation of the Z values of the four rounding points defined in the axis.
l Z values of defined points are passed in the ZVal matrix (two dimension array).
l ZVal dimensions must be understood as: ZVal [iX , iY]

l Values in X and Y axis must be sorted from the smallest to the biggest.
l There must be at least two points defined in each axis.
l ZVal must fit the dimension of XAxis and YAxis arrays.

l For instance:
l XAxis : ARRAY [0..2] of REAL;
l YAxis : ARRAY [0.3] of REAL;
l ZVal : ARRAY [0..2,0..3] of REAL;

l If the input point is outside the rectangle defined by XAxis and YAxis limits, the Z output is bound to the
corresponding value and an error is reported.

If the function fails, the ERR output gives the cause of the error:

Error Code Meaning

0 OK

1 Invalid dimension of input arrays.

2 Invalid points for the X axis.

3 Invalid points for the Y axis.

4 X,Y point is out of the defined axis.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example
Not available.

2.4.23 VLID

Function - Gets the identifier (ID) of an embedded list of variables.

Inputs
Input Data Type Range Unit Default Description

FILE STRING Pathname of the list file (.SPL or .TXT).
Must be a constant value.

72 Kollmorgen® | kdn.kollmorgen.com | December 2024

Outputs
Output Data Type Range Unit Description

ID DINT ID of the list.
To be passed to other blocks.

Remarks

List files are read at compiling time and are embedded into the downloaded application code.
This implies that a modification performed in the list file after downloading is not taken into account by the
application.

l This function is used to create an Identifier (ID) or ListID for a list of application variables that are typically
stored on the development PC.

l The list of application variables:
l Is a simple .TXT file.
l Can contain only one variable name per line.
l Can be only global variables (i.e., Internal variables known by all programs.)

l This function's ID output can be used as an input to "LogFileCSV" (➜ p. 74).
l It defines the application variables whose present value is recorded each time LogFileCSV is
executed.

FBD Language Example

FFLD Language Example
The function is executed only if EN is TRUE.

IL Language Example

Op1: LD 'MyFile.txt'
VLID COL
ST ListID

ST Language Example

ID := VLID ('MyFile.spl');

2.5 PLC Advanced - Files

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 73

KAS - PLC Library | 2 PLC Advanced Libraries

These are the PLC Advanced File functions:

Name Description

LogFileCSV Create a log file in CSV format for a list of variables.

SD Card Mounting Functions Mounting an SD card.

2.5.1 LogFileCSV

Function Block - Create a log file in CSV format for a list of variables.

Inputs
Input Data

Type Range Unit Default Description

LOG BOOL Variables are saved on any rising edge of this input.

RST BOOL Reset the contents of the CSV file.

LIST DINT ID of the list of variables to log (use VLID function).

PATH STRING Path name of the CSV file (PxMM flash memory, SD card, or
Shared Directory).

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if the requested operation has been performed without error.

ERR DINT Error report for the last requested operation.
0 (zero) is OK.

Remarks

Calling this function can lead to missing several PLC cycles.
Files are opened and closed directly by the target's Operating System.
Opening some files may be dangerous for system safety and integrity.
The number of open files may be limited by the target system.

l Opening a file may be unsuccessful (invalid path or file name, too many open files...).
Your application has to process such error cases in a safe way.

l File management may be not available on some targets.
l See the OEM instructions for more information about available features.

l Valid paths for storing files depend on the target implementation.
l See the OEM instructions for more information about available paths.

74 Kollmorgen® | kdn.kollmorgen.com | December 2024

l This function enables to log values of a list of variables in a CSV file.
l On each rising edge of the LOG input, one more line of values is added to the file.
l There is one column for each variable, as they are defined in the list.

l The list of variables is prepared using the KAS-IDE or a text editor.
l Use the VLID function to get the identifier of the list.

l On a rising edge of the RST command, the file is emptied.
l When a LOG or RST command is requested, the Q output is set to TRUE if successful.
l In case of error, a report is given in the ERR output.

l Possible error values are:
l 1 = Cannot reset file on a RST command.
l 2 = Cannot open file for data storing on a LOG command.
l 3 = Embedded lists are not supported by the runtime.
l 4 = Invalid list ID.
l 5 = Error while writing to file.

l Combined with real time clock management functions, this block provides a very easy way to generate a
periodical log file.

This example shows a list and a program that log values everyday at 14h23m (2:23 pm) (see).

FBD Language Example

FFLD Language Example

IL Language Example

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 75

KAS - PLC Library | 2 PLC Advanced Libraries

(* MyLOG is a declared instance of LogFileCSV function block *)
Op1: CAL MyLOG (b_LOG, RST, LIST, PATH);
FFLD MyLOG.Q
ST Q
FFLD MyLog.ERR
ST ERR

ST Language Example

(* MyLOG is a declared instance of LogFileCSV function block *)
MyLOG (b_LOG, RST, LIST, PATH);
Q := MyLOG.Q;
ERR := MyLog.ERR;

See Also

VLID

2.5.2 SD Card Mounting Functions

Function - Mounting an SD card.

Name Use

SD_ISREADY Verify the SD card is mounted.

SD_MOUNT Mount the SD card.

SD_UNMOUNT Unmount the SD card.

2.5.2.1 SD_ISREADY

- Verify the SD card is mounted.

Device Action Return Value Example

AKD PDMM Verify the SD card is mounted. l Mounted
SD card =
return value
is TRUE.

l Unmounted
SD card =
return value
is FALSE

OK := SD_ISREADY
();

OK : BOOL TRUE if
the SD
card is
mounted.

PCMM2G SD Card is not supported by PCMM2G.
This does not perform any action.

It always
returns FALSE.

76 Kollmorgen® | kdn.kollmorgen.com | December 2024

Device Action Return Value Example

Simulator Verify the SDCard folder exists here:
C:\Users\[user's
name]\AppData\Local\Kollmorgen\KAS\Sino
pe Simulator\Application\userdata\SDCard

l SDCard
folder exists
= return
value is
TRUE.

l SDCard
folder does
not exist =
return value
is FALSE.

OK := SD_ISREADY
();

OK : BOOL TRUE if
the
SDCard
folder
exists.

2.5.2.2 SD_MOUNT

- Mount the SD card.

Recommended: Stop all motion before using SD_MOUNT.

Device Action Return Value Example

AKD PDMM Mount the SD card. If the mount is successful, the
return value is TRUE.
If the mount is not successful,
the return value is FALSE.

OK := SD_MOUNT();

OK : BOOL TRUE if
mounting the
SD card is
successful.

PCMM2G SD Card is not
supported by
PCMM2G.
This does not perform
any action.

It always returns FALSE.

Simulator This does not perform
any action.

It always returns TRUE.

2.5.2.3 SD_UNMOUNT

- Unmount the SD card.

Recommended: Stop all motion before using SD_UNMOUNT.

Device Action Return Value Example

AKD PDMM Unmount the SD
card.

If the unmount is successful, the
return value is TRUE.
If the unmount is not successful,
the return value is FALSE.

OK := SD_UNMOUNT();

OK : BOOL TRUE if
unmounting
the SD card is
successful.

PCMM2G SD Card is not
supported by
PCMM2G.
This does not
perform any action.

It always returns FALSE.

Simulator This does not
perform any action.

It always returns TRUE.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 77

KAS - PLC Library | 2 PLC Advanced Libraries

2.6 PID

Function Block - PID loop.

Inputs
Input Data

Type Range Unit Default Description

AUTO BOOL l TRUE = normal mode
l FALSE = manual mode

DEADB_
ERR

REAL Hysteresis on PV. PV is considered as unchanged if it is
both:

l Greater than (PVprev - DEADBAND_W).
l Less than (PRprev + DEADBAND_W).

FFD REAL Disturbance value on output.

I_ITL_ON BOOL If TRUE, the integrated value is reset to I_ITLVAL.

I_ITLVAL REAL Reset value for integration when I_ITL_ON is TRUE.

I_SEL BOOL If FALSE, the integrated value is ignored.

INT_HOLD BOOL If TRUE, the integrated value is frozen.

KP REAL Gain.

PV REAL Process value.

SP REAL Set point.

TD REAL Derivation factor.

TI REAL Integration factor.

TS TIME Sampling period.

XMAX REAL Maximum output value.

XMIN REAL Minimum allowed output value.

Xout_Manu REAL Output value in manual mode.

Outputs
Output Data Type Range Unit Description

ER REAL Last calculated error.

Xout REAL Output command value.

Xout_D REAL Last calculated derivated value.

Xout_HLM BOOL TRUE if the output value is saturated to XMAX.

Xout_I REAL Last calculated integrated value.

Xout_LLM BOOL TRUE if the output value is saturated to XMIN.

Xout_P REAL Last calculated proportional value.

Remarks

78 Kollmorgen® | kdn.kollmorgen.com | December 2024

l It is important for the stability of the control that the TS sampling period is much bigger than the cycle time.
l Output of the PID block always starts with zero.

l The value varies per the inputs provided upon further cycle executions.

2.6.0.1 Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the output rung has the same value as the AUTO input, corresponding to the input
rung.

l ENO has the same state as the input rung.

KAS - PLC Library | 2 PLC Advanced Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 79

KAS - PLC Library | 2 PLC Advanced Libraries

IL Language Example

(* MyPID is a declared instance of PID function block. *)
Op1: CAL MyPID (AUTO, PV, SP, XOUT_MANU, KP, TI, TD, TS, XMIN, XMAX, I_SEL,
I_ITL_ON, I_ITLVAL, DEADB_ERR, FFD)

FFLD MyPID.XOUT
ST XOUT
FFLD MyPID.ER
ST ER
FFLD MyPID.XOUT_P
ST XOUT_P
FFLD MyPID.XOUT_I
ST XOUT_I
FFLD MyPID.XOUT_D
ST XOUT_D
FFLD MyPID.XOUT_HLM
ST XOUT_HLM
FFLD MyPID.XOUT_LLM
ST XOUT_LLM

ST Language Example

(* MyPID is a declared instance of PID function block. *)
MyPID (AUTO, PV, SP, XOUT_MANU, KP, TI, TD, TS, XMIN, XMAX, I_SEL, I_ITL_ON,
I_ITLVAL, DEADB_ERR, FFD);
XOUT := MyPID.XOUT;
ER := MyPID.ER;
XOUT_P := MyPID.XOUT_P;
XOUT_I := MyPID.XOUT_I;
XOUT_D := MyPID.XOUT_D;
XOUT_HLM := MyPID.XOUT_HLM;
XOUT_LLM := MyPID.XOUT_LLM;

80 Kollmorgen® | kdn.kollmorgen.com | December 2024

3 PLC Standard Libraries

3.1 Programming Languages

3.2 Programming Features
These topics detail programming features and standard blocks:

l "PLC Advanced Libraries" (➜ p. 31)
l "Arithmetic Operations" (➜ p. 81)
l "Basic Operations" (➜ p. 96)
l "Boolean Operations" (➜ p. 111)
l "Comparison Operations" (➜ p. 160)
l "Counters" (➜ p. 186)
l "Mathematic Operations" (➜ p. 190)
l "Registers" (➜ p. 206)
l "Selectors" (➜ p. 233)
l "String Operations" (➜ p. 250)
l "Timers" (➜ p. 273)
l "Trigonometric Functions" (➜ p. 287)
l "Conversion Functions" (➜ p. 169)

Some other functions not documented are reserved for diagnostics and special operations.
Contact Kollmorgen technical support for more information.

3.3 Arithmetic Operations

l "All Functions and Operators (Alphabetically)" (➜ p. 81)
l "Standard Functions" (➜ p. 82)
l "Standard Operators" (➜ p. 82)

3.3.1 All Functions and Operators (Alphabetically)

Name Description

Addition + Performs an addition of all inputs.

Divide / Performs a division of all inputs.

limit Limits a numeric value between low and high bounds.

max Get the maximum of two integers.

min Get the minimum of two integers.

mod / modLR / modR Calculation of modulo.

Multiply * Performs a multiplication of all inputs.

NEG - Performs a negation of the input. (unary operator)

odd Test if an integer is odd.

SetWithin Force a value when inside an interval.

Subtraction - Performs a subtraction of all inputs.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 81

KAS - PLC Library | 3 PLC Standard Libraries

3.3.1.1 Standard Functions
These are arithmetic functions.

Name Description

limit Limits a numeric value between low and high bounds.

max Get the maximum of two integers.

min Get the minimum of two integers.

mod / modLR / modR Calculation of modulo.

odd Test if an integer is odd.

SetWithin Force a value when inside an interval.

3.3.1.2 Standard Operators
These are the arithmetic operators.

Name Description

Addition + Performs an addition of all inputs.

Divide / Performs a division of all inputs.

Multiply * Performs a multiplication of all inputs.

NEG - Performs a negation of the input. (unary operator)

Subtraction - Performs a subtraction of all inputs.

3.3.2 Addition +
Operator - Performs an addition of all inputs.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q ANY Result: IN1 + IN2.

Remarks
l All inputs and the output must have the same type.
l The addition can be used with strings.

l The result is the concatenation of the input strings.

FBD Language Example

82 Kollmorgen® | kdn.kollmorgen.com | December 2024

l In the FBD Language, the block can have a maximum of 32 inputs.

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the ADD instruction performs an addition between the current result and the operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
ADD IN2
ST Q (* Q is equal to: IN1 + IN2 *)

Op2: FFLD IN1
ADD IN2
ADD IN3
ST Q (* Q is equal to: IN1 + IN2 + IN3 *)

ST Language Example

Q := IN1 + IN2;
MyString := 'He' + 'll ' + 'o'; (* MyString is equal to 'Hello' *)

See Also

l Divide /
l Multiply
l Subtraction -

3.3.3 Divide /
Operator - Performs a division of all inputs.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY_NUM First input.

IN2 ANY_NUM Second input.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 83

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Q ANY_NUM Result: IN1 / IN2.

Remarks
l All inputs and the output must have the same type.

FBD Language Example
l In the FBD Language, the block can have a maximum of 32 inputs.

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL language, the DIV instruction performs a division between the current result and the operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
DIV IN2
ST Q (* Q is equal to: IN1 / IN2 *)

Op2: FFLD IN1
DIV IN2
DIV IN3
ST Q (* Q is equal to: IN1 / IN2 / IN3 *)

ST Language Example

Q := IN1 / IN2;

See Also

84 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Addition +
l Multiply
l Subtraction -

3.3.4 NEG -

Operator - Performs a negation of the input. (unary operator)

Inputs
Input Data Type Range Unit Default Description

IN ANY Numeric value.

Outputs
Output Data Type Range Unit Description

Q ANY Negation of the input.

Remarks
l In FBD and FFLD language, the block NEG can be used.

Truth Table

IN Q

0 0

1 -1

-123 123

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The negation is executed only if EN is TRUE.
l ENO keeps the same value as EN.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 85

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
Not available.

ST Language Example
l In the ST Language, - (hyphen) can be followed by a complex Boolean expression between parentheses.

l The output data type must be the same as the input data type.

Q := -IN;
Q := - (IN1 + IN2);

3.3.5 limit

Function - Limits a numeric value between low and high bounds.

Inputs
Input Data Type Range Unit Default Description

IMIN DINT Low bound.

IN DINT Input value.

IMAX DINT High bound.

Outputs
Output Data Type Range Unit Description

Q DINT IMIN if IN < IMIN; IMAX if IN > IMAX; IN otherwise.

Remarks
None

3.3.5.0.1 Function Diagram

FBD Language Example

86 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The comparison is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l Other inputs are operands of the function, separated by comas.

Op1: LD IMIN
LIMIT IN, IMAX
ST Q

ST Language Example

Q := LIMIT (IMIN, IN, IMAX);

See Also

l max
l min
l mod / modLR / modR
l odd

3.3.6 max

Function - Get the maximum of two integers.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 87

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Q ANY IN1 if IN1 > IN2; IN2 otherwise.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The comparison is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN1
MAX IN2
ST Q (* Q is the maximum of IN1 and IN2 *)

ST Language Example

Q := MAX (IN1, IN2);

See Also

l "limit" (➜ p. 86)
l "min" (➜ p. 88)
l "mod / modLR / modR" (➜ p. 90)
l "odd" (➜ p. 92)

3.3.7 min

88 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function - Get the minimum of two integers.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q ANY IN1 if IN1 < IN2; IN2 otherwise.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The comparison is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN1
MIN IN2
ST Q (* Q is the minimum of IN1 and IN2 *)

ST Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 89

KAS - PLC Library | 3 PLC Standard Libraries

Q := MIN (IN1, IN2);

See Also

l "limit" (➜ p. 86)
l "max" (➜ p. 87)
l "mod / modLR / modR" (➜ p. 90)
l "odd" (➜ p. 92)

3.3.8 mod / modLR / modR

Function - Calculation of modulo.

Inputs
Input Data Type Range Unit Default Description

IN mod = DINT
modR = REAL
modLR = LREAL

Input value.

BASE mod = DINT
modR = REAL
modLR = LREAL

Base of the modulo.

Outputs
Output Data Type Range Unit Description

Q mod = DINT
modR = REAL
modLR = LREAL

Modulo: rest of the integer division (IN / BASE).

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The comparison is executed only if EN is TRUE.
l ENO has the same value as EN.

90 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
MOD BASE
ST Q (* Q is the rest of integer division: IN / BASE *)

ST Language Example

Q := MOD (IN, BASE);

See Also

l "limit" (➜ p. 86)
l "max" (➜ p. 87)
l "min" (➜ p. 88)
l "odd" (➜ p. 92)

3.3.9 Multiply
Operator - Performs a multiplication of all inputs.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY_NUM First input.

IN2 ANY_NUM Second input.

Outputs
Output Data Type Range Unit Description

Q ANY_NUM Result: IN1 * IN2.

Remarks
l All inputs and the output must have the same type.

FBD Language Example
l In the FBD Language, the block can have a maximum of 32 inputs.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 91

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l The multiplication is executed only if EN is TRUE.
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.
l ENO is equal to EN.

IL Language Example
l In the IL Language, the MUL instruction performs a multiplication between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
MUL IN2
ST Q (* Q is equal to: IN1 * IN2 *)

Op2: FFLD IN1
MUL IN2
MUL IN3
ST Q (* Q is equal to: IN1 * IN2 * IN3 *)

ST Language Example

Q := IN1 * IN2;

See Also

l Addition +
l Divide /
l Subtraction -

3.3.10 odd

Function - Test if an integer is odd.

Inputs

92 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN DINT Input value.

Outputs
Output Data Type Range Unit Description

Q BOOL l TRUE if IN is odd.
l FALSE if IN is even.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The function is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
ODD
ST Q (* Q is TRUE if IN is odd. *)

ST Language Example

Q := ODD (IN);

See Also

l "limit" (➜ p. 86)
l "max" (➜ p. 87)
l min
l "mod / modLR / modR" (➜ p. 90)

3.3.11 SetWithin

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 93

KAS - PLC Library | 3 PLC Standard Libraries

.

Function - Force a value when inside an interval.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input.

MIN ANY Low limit of the interval.

MAX ANY High limit of the interval.

VAL ANY Value to apply when inside the interval.

Outputs
Output Data Type Range Unit Description

Q ANY Result.

Remarks
l The output is forced to VAL when the IN value is within the [MIN ... MAX] interval.
l It is set to IN when outside the interval.

Truth Table

In Q

IN < MIN IN

IN > MAX IN

MIN < IN < MAX VAL

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example
Not available.

3.3.12 Subtraction -
Operator - Performs a subtraction of all inputs.

94 Kollmorgen® | kdn.kollmorgen.com | December 2024

Inputs
Input Data Type Range Unit Default Description

IN1 ANY_NUM / TIME First input.

IN2 ANY_NUM / TIME Second input.

Outputs
Output Data Type Range Unit Description

Q ANY_NUM / TIME Result: IN1 - IN2.

Remarks
l All inputs and the output must have the same type.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.
l The subtraction is executed only if EN is TRUE.
l ENO is equal to EN.

IL Language Example
l In the IL Language, the SUB instruction performs a subtraction between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
SUB IN2
ST Q (* Q is equal to: IN1 - IN2 *)

Op2: FFLD IN1
SUB IN2
SUB IN3
ST Q (* Q is equal to: IN1 - IN2 - IN3 *)

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 95

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

Q := IN1 - IN2;

See Also

l Addition +
l Divide /
l Multiply

3.4 Basic Operations

3.4.1 Data Manipulation
These are the language features for basic data manipulation:

l "Assignment :=" (➜ p. 97) - Variable assignment.
l "Bit Access" (➜ p. 98)
l Function Call
l Call a Function Block
l "Call a Sub-Program" (➜ p. 99)
l "CountOf" (➜ p. 242) - Returns the number of items in an array.
l "DEC" (➜ p. 243) - Decrease a numerical variable.
l "INC" (➜ p. 244) - Increase a numerical variable.
l "MoveBlock" (➜ p. 246) - Move / Copy items of an array.
l "NEG -" (➜ p. 247) Performs a negation of the input. (unary operator)
l "Parenthesis ()" (➜ p. 105) - Force the evaluation order in a complex expression.

3.4.2 Control Program Execution

3.4.2.1 Language Features
These are the language features to control program execution:

l Jumps JMP JMPC JMPNC JMPCN
l LABELS
l "RETURN RET RETC RETNC RETCN" (➜ p. 107)

3.4.2.2 Structured Statements
These are the structured statements to control program execution:

Statement Description

"CASE OF ELSE END_CASE" (➜ p. 100) Switch to one of various possible statements.

"EXIT" (➜ p. 101) Exit from a loop instruction.

"FOR TO BY END_FOR" (➜ p. 102) Execute iterations of statements.

"IF THEN ELSE ELSIF END_IF" (➜ p. 103) Conditional execution of statements.

"ON" (➜ p. 104) Conditional execution of statements.

"REPEAT UNTIL END_REPEAT" (➜ p. 106) Repeat a list of statements.

"WAIT / WAIT_TIME" (➜ p. 109) Suspends the execution of an ST program.

"WHILE DO END_WHILE" (➜ p. 110) Repeat a list of statements while a condition is TRUE.

96 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.4.3 Assignment :=

Operator - Variable assignment.

Inputs
Input Data Type Range Unit Default Description

IN ANY Any variable or complex expression.

Outputs
Output Data Type Range Unit Description

Q ANY Forced variable.

Remarks
l The output variable and the input expression must have the same type.
l The forced variable cannot have the read-only attribute.
l In the FBD and FFLD languages, the 1 block is available to perform a 1 gain data copy (1 copy).
l In the IL Language:

l The FFLD instruction loads the first operand.
l The ST instruction stores the current result into a variable.

l The current result and the operand of ST must have the same type.
l Both FFLD and ST instructions can be modified by N in case of a Boolean operand for performing a
Boolean negation.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the assignment.

l The output rung keeps the state of the input rung.
l The copy is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 97

KAS - PLC Library | 3 PLC Standard Libraries

Op1: FFLD IN (* current result is: IN *)
ST Q (* Q is: IN *)
FFLDN IN1 (* current result is: NOT (IN1) *)
ST Q (* Q is: NOT (IN1) *)
FFLD IN2 (* current result is: IN2 *)
STN Q (* Q is: NOT (IN2) *)

ST Language Example

Q := IN; (* copy IN into variable Q *)
Q := (IN1 + (IN2 / IN 3)) * IN4; (* assign the result of a complex

expression *)
result := SIN (angle); (* assign a variable with the result of a

function *)
time := MyTon.ET; (* assign a variable with an output parameter of

a function block *)

See Also

Parenthesis ()

3.4.4 Bit Access
You can directly specify a bit within an integer variable in expressions and diagrams using this notation:

Variable.BitNo

Where:

Variable: is the name of an integer variable.

BitNo: is the number of the bit in the integer.

The variable can have one of these data types:

Bits Data Type

8-bits from .0 to .7 BYTE, SINT, USINT

16-bits from .0 to .15 INT, UINT, DWORD

32-bits from .0 to 31 DINT, DWORD, UDINT

64-bits from .0 to .63 LINT, LWORD, ULINT

0 (zero) always represents the less significant bit.

3.4.5 Differences between Functions and Function Blocks
It is important to clearly understand what is different between functions and function blocks.

l A Function is called once and it performs an action.
l This is synchronous.

l A Function Block (FB) is an instance that has its own set of data.
l An FB maintains its own, internal machine state and often has an output to indicate when the work
is done.

98 Kollmorgen® | kdn.kollmorgen.com | December 2024

l An FB is asynchronous.
l The best way to work with a function block is to call it during multiple scan.

l This triggers the action the first time, then monitor the status of this action, especially via the
Done output.

See Also

l Call a Function
l Call a Function Block

3.4.6 Call a Sub-Program
A sub-program is called by another program.

l Unlike function blocks, local variables of a sub-program are not instantiated and you do not need to
declare instances.

l A call to a sub-program processes the block algorithm using the specified input parameters.
l Output parameters can then be accessed.

3.4.6.1 FBD and FFLD Languages
To call a sub-program in FBD or FFLD languages, insert the block in the diagram and connect its inputs and
outputs.

IL Language Example
To call a sub-program in the IL language, you must use the CAL instruction with the name of the sub-program,
followed by the input parameters written between parentheses and separated by comas.

Alternatively, the CALC, CALCN or CALNC conditional instructions can be used:

CAL Calls the sub-program
CALC Calls the sub-program if the current result is TRUE
CALNC Calls the sub-program if the current result is FALSE
CALCN same as CALNC

Example

Op1: CAL MySubProg (i1, i2)
FFLD MySubProg.Q1
ST Res1
FFLD MySubProg.Q2
ST Res2

ST Language Example
To call a sub-program in ST, you must specify its name, followed by the input parameters written between
parentheses and separated by comas.

To have access to an output parameter, use the name of the sub-program followed by a dot . and the name of
the parameter:

MySubProg (i1, i2); (* calls the sub-program *)
Res1 := MySubProg.Q1;
Res2 := MySubProg.Q2;

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 99

KAS - PLC Library | 3 PLC Standard Libraries

Alternatively, if a sub-program has one and only one output parameter, it can be called as a function in ST
language:

Res := MySubProg (i1, i2);

3.4.7 CASE OF ELSE END_CASE
Statement - Switch to one of various possible statements.

3.4.7.1 Syntax

CASE <DINT expression> OF
<value> :
 <statements>
<value> , <value> :
 <statements>;
<value> .. <value> :
 <statements>;
ELSE
 <statements>
END_CASE;

Remarks
l All enumerated values correspond to the evaluation of the DINT expression and are possible cases in the
execution of the statements.

l The statements specified after the ELSE keyword are executed if the expression takes a value which is
not enumerated in the switch.

l For each case, you must specify either:
l a value.
l a list of possible values separated by comas (,).
l a range of values specified by a "min .. max" interval.

l You must enter space characters before and after the ".." separator.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

(* This example check first prime numbers: *)
CASE iNumber OF
0 :

100 Kollmorgen® | kdn.kollmorgen.com | December 2024

Alarm := TRUE;
AlarmText := '0 gives no result';

1 .. 3, 5 :
bPrime := TRUE;

4, 6 :
bPrime := FALSE;

ELSE
Alarm := TRUE;
AlarmText := 'I don't know after 6 !';

END_CASE;

See Also

l EXIT
l "FOR TO BY END_FOR" (➜ p. 102)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)
l "WHILE DO END_WHILE" (➜ p. 110)

3.4.8 EXIT
Statement - Exit from a loop instruction.

Remarks
l The EXIT statement indicates that the current loop (FOR, REPEAT, or WHILE) must be finished.
l The execution continues after the END_FOR, END_REPEAT, or END_WHILE keyword or the loop where
the EXIT is.

l EXIT quits only one loop and cannot be used to exit at the same time several levels of nested loops.

Loop instructions can lead to infinite loops that block the target cycle.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

(* This program searches for the first non null item of an array: *)
iFound = -1; (* means: not found *)
FOR iPos := 0 TO (iArrayDim - 1) DO

IF iPos <> 0 THEN

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 101

KAS - PLC Library | 3 PLC Standard Libraries

iFound := iPos;
EXIT;

END_IF;
END_FOR;

See Also

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "FOR TO BY END_FOR" (➜ p. 102)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)
l "WHILE DO END_WHILE" (➜ p. 110)

3.4.9 FOR TO BY END_FOR
Statement - Execute iterations of statements.

3.4.9.1 Syntax

FOR <index> := <minimum> TO <maximum>
BY <step> DO

<statements>
END_FOR;

index = DINT internal variable used as index.
minimum = DINT expression: initial value for index.
maximum = DINT expression: maximum allowed value for index.
step = DINT expression: increasing step of index after each iteration
(default is 1) .

Remarks
l The BY <step> statement can be omitted.
l The default value for the step is 1.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

102 Kollmorgen® | kdn.kollmorgen.com | December 2024

iArrayDim := 10;

(* resets all items of the array to 0 *)
FOR iPos := 0 TO (iArrayDim - 1) DO

MyArray[iPos] := 0;
END_FOR;

(* set all items with odd index to 1 *)
FOR iPos := 1 TO 9 BY 2 DO

MyArray[ipos] := 1;
END_FOR;

See Also

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "EXIT" (➜ p. 101)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)
l "WHILE DO END_WHILE" (➜ p. 110)

3.4.10 IF THEN ELSE ELSIF END_IF
Statement - Conditional execution of statements.

3.4.10.1 Syntax

IF <BOOL expression> THEN
<statements>

ELSIF <BOOL expression> THEN
<statements>

ELSE
<statements>

END_IF;

Remarks
l The IF statement is available in ST only.
l The execution of the statements is conditioned by a Boolean expression.
l ELSIF and ELSE statements are optional.
l There can be several ELSIF statements.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 103

KAS - PLC Library | 3 PLC Standard Libraries

Not available.

ST Language Example

(* simple condition *)

IF bCond THEN
Q1 := IN1;
Q2 := TRUE;

END_IF;

(* binary selection *)
IF bCond THEN

Q1 := IN1;
Q2 := TRUE;
ELSE

Q1 := IN2;
Q2 := FALSE;

END_IF;

(* enumerated conditions *)
IF bCond1 THEN

Q1 := IN1;
ELSIF bCond2 THEN

Q1 := IN2;
ELSIF bCond3 THEN

Q1 := IN3;
ELSE

Q1 := IN4;
END_IF;

See Also

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "EXIT" (➜ p. 101)
l "FOR TO BY END_FOR" (➜ p. 102)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)
l "WHILE DO END_WHILE" (➜ p. 110)

3.4.11 ON
Statement - Conditional execution of statements.

3.4.11.1 Syntax

ON <BOOL expression> DO
<statements>

END_DO;

Remarks

104 Kollmorgen® | kdn.kollmorgen.com | December 2024

This instruction is NOT UDFB safe.
Do not use inside UDFBs.

l The ON instruction:
l Provides a simpler syntax for checking the rising edge of a Boolean condition.
l Avoids systematic use of the R_TRIG function block or other "last state" flags.

l Statements within the ON structure are executed only when the Boolean expression rises from FALSE to
TRUE.

l The ON syntax is available in any program or sub-program.
l This statement is an extension to the standard and is NOT IEC 61131-3 compliant.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

(* This example counts the rising edges of variable bIN *)
ON bIN DO
 diCount := diCount + 1;
END_DO;

3.4.12 Parenthesis ()
Operator - Force the evaluation order in a complex expression.

Remarks
l Parentheses are used in ST and IL languages for changing the default evaluation order of various
operations within a complex expression.

l Example: The default evaluation of 2 * 3 + 4 expression in ST Language gives a result of 10 because
* operator has the highest priority.

l Changing the expression as 2 * (3 + 4) gives a result of 14.
l Parentheses can be nested in a complex expression.

These are the default evaluation priority order for ST language operations:

Priority Operation Description

1 - NOT Unary operators

2 * / Multiply / Divide

3 + - Add / Subtract

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 105

KAS - PLC Library | 3 PLC Standard Libraries

Priority Operation Description

4 < > <= >= = <> Comparisons

5 & AND Boolean And

6 OR Boolean Or

7 XOR Exclusive OR

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
l In the IL Language:

l The default order is the sequence of instructions.
l Each new instruction modifies the current result sequentially.

l The opening parenthesis "(" is written between the instruction and its operand.
l The closing parenthesis ")" must be written alone as an instruction without operand.

Op1: FFLD(IN1
ADD(IN2
MUL IN3
)
SUB IN4
)
ST Q (* Q is: (IN1 + (IN2 * IN3) - IN4) *)

ST Language Example

Q := (IN1 + (IN2 / IN 3)) * IN4;

See Also

Assignment :=

3.4.13 REPEAT UNTIL END_REPEAT
Statement - Repeat a list of statements.

3.4.13.1 Syntax

REPEAT
<statements>

UNTIL <BOOL expression>
END_REPEAT;

106 Kollmorgen® | kdn.kollmorgen.com | December 2024

Remarks
l The statements between REPEAT and UNTIL are executed until the Boolean expression is TRUE.
l The condition is evaluated after the statements are executed.

l Statements are executed at least once.

Loop instructions can lead to infinite loops that block the target cycle.
Never test the state of an input in the condition because the input is not refreshed before the next cycle.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

iPos := 0;
REPEAT

MyArray[iPos] := 0;
iNbCleared := iNbCleared + 1;
iPos := iPos + 1;

UNTIL iPos = iMax
END_REPEAT;

See Also

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "EXIT" (➜ p. 101)
l "FOR TO BY END_FOR" (➜ p. 102)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)
l "WHILE DO END_WHILE" (➜ p. 110)

3.4.14 RETURN RET RETC RETNC RETCN
Statement - Jump to the end of the program.

Remarks
l When used within an action block of a SFC step, the RETURN statement jumps to the end of the action
block.

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 107

KAS - PLC Library | 3 PLC Standard Libraries

l The return statement is represented by the <RETURN> symbol.
l The input of the symbol must be connected to a valid Boolean signal.
l The jump is performed only if the input is TRUE.

In this example, the TON block will not be called if bIgnore is TRUE.

FFLD Language Example
l The <RETURN> symbol is used as a coil at the end of a rung.

l The jump is performed only if the rung state is TRUE.

In this example, all the networks above 5 are skipped if ENABLE is FALSE.

IL Language Example
These are the meanings of possible instructions:

l RET Jump to the end always.
l RETC Jump to the end if the current result is TRUE.
l RETNC Jump to the end if the current result is FALSE.
l RETCN Same as RETNC.

Start: FFLD IN1
RETC (* Jump to the end if IN1 is TRUE *)

FFLD IN2 (* these instructions are not executed *)
ST Q2 (* if IN1 is TRUE *)
RET (* Jump to the end unconditionally *)

FFLD IN3 (* these instructions are never executed *)
ST Q3

ST Language Example

IF NOT bEnable THEN
RETURN;

END_IF;
(* the rest of the program is not executed if bEnable is FALSE *)

See Also

108 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Jumps JMP JMPC JMPNC JMPCN
l LABELS

3.4.15 WAIT / WAIT_TIME
Statement - Suspends the execution of an ST program.

3.4.15.1 Syntax

WAIT<BOOL expression> ;

WAIT_TIME<TIME expression> ;

Remarks
l The WAIT statement:

l Provides an easy way to program a state machine.
l This avoids the use of complex CASE structures.

l Verifies the attached Boolean expression and takes these actions:
l If the expression is TRUE, the program continues normally.
l If the expression is FALSE, then the execution of the program is suspended up to the next
PLC cycle. The Boolean expression will be checked again during next cycles until it
becomes TRUE. The execution of other programs is not affected.

l The WAIT_TIME statement suspends the execution of the program for the specified duration.
l The execution of other programs is not affected.

These instructions are available in ST Language only and have no correspondence in other languages.

l The WAIT and WAIT_TIME instructions:
l Cannot be called in a User-Defined Function Block (UDFB).

l The use of WAIT or WAIT_TIME in a UDFB provokes a compile error.
l Can be called in a sub-program.

l However, it can lead to some unsafe situation if the same sub program is called from
various programs.

l Do not support re-entrancy.
l Avoiding this situation is the responsibility of the programmer.
l The compiler outputs some warning messages if a sub-program containing a WAIT or
WAIT_TIME instruction is called from more than one program.

l Must not be called from ST parts of SFC programs.
l This makes no sense as SFC is already a state machine.
l The use of WAIT or WAIT_TME in SFC or in a sub-program called from SFC provokes a
compile error.

l Are not available when the code is compiled through a "C" compiler.
l Using "C" code generation with a program containing a WAIT or WAIT_TIME instruction
provokes an error during post-compiling.

l This statement is an extension to the standard and is NOT IEC 61131-3 compliant.

This instruction is NOT UDFB safe.
Do not use inside UDFBs.

FBD Language Example
Not available.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 109

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

(* use of WAIT with different kinds of BOOL expressions *)
WAIT BoolVariable;
WAIT (diLevel > 100) AND NOT bAlarm;
WAIT SubProgCall ();

(* use of WAIT_TIME with different kinds of TIME expressions *)
WAIT_TIME t#2s;
WAIT_TIME TimeVariable;

3.4.16 WHILE DO END_WHILE
Statement - Repeat a list of statements while a condition is TRUE.

3.4.16.1 Syntax

WHILE <BOOL expression> DO
<statements>

END_WHILE;

Remarks
l The statements between DO and END_WHILE are executed while the Boolean expression is TRUE.
l The condition is evaluated before the statements are executed.
l If the condition is FALSE when WHILE is first reached, statements are never executed.

Loop instructions can lead to infinite loops that block the target cycle.
Never test the state of an input in the condition because the input is not refreshed before the next cycle.

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

110 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example

iMax := 10;
WHILE iPos < iMax DO

MyArray[iPos]:=0;
iPos +:=1;

END_WHILE;

See Also

l "CASE OF ELSE END_CASE" (➜ p. 100)
l "EXIT" (➜ p. 101)
l "FOR TO BY END_FOR" (➜ p. 102)
l "IF THEN ELSE ELSIF END_IF" (➜ p. 103)
l "REPEAT UNTIL END_REPEAT" (➜ p. 106)

3.5 Boolean Operations

l "All Functions (Alphabetically)" (➜ p. 111)
l "Standard Operators" (➜ p. 111)
l "Available Blocks" (➜ p. 112)

3.5.1 All Functions (Alphabetically)

Name Description

AND ANDN & Performs a logical AND of all inputs.

f_trig Falling pulse detection.

FlipFlop Flipflop bistable.

NOT Performs a Boolean negation of the input.

OR / ORN Performs a logical OR of all inputs.

QOR Counts the number of TRUE inputs.

R Force a Boolean output to FALSE.

r_trig Rising pulse detection.

RS Reset dominant bistable.

S Force a Boolean output to TRUE.

sema Semaphore.

SR Set dominant bistable.

XOR / XORN Performs an exclusive OR of all inputs.

3.5.1.1 Standard Operators
These are the operators for managing Booleans.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 111

KAS - PLC Library | 3 PLC Standard Libraries

Name Description

AND ANDN & Performs a logical AND of all inputs.

NOT Performs a Boolean negation of the input.

OR / ORN Performs a logical OR of all inputs.

QOR Counts the number of TRUE inputs.

R Force a Boolean output to FALSE.

S Force a Boolean output to TRUE.

XOR / XORN Performs an exclusive OR of all inputs.

3.5.1.2 Available Blocks
These are the available blocks for managing Boolean signals:

Name Description

f_trig Falling pulse detection.

FlipFlop Flipflop bistable.

r_trig Rising pulse detection.

RS Reset dominant bistable.

sema Semaphore.

SR Set dominant bistable.

3.5.2 FlipFlop

Function Block - Flipflop bistable.

Inputs
Input Data Type Range Unit Default Description

IN BOOL Swap command (on rising edge).

RST BOOL Reset to FALSE.

Outputs
Output Data Type Range Unit Description

Q BOOL Output.

Remarks
l The output is systematically reset to FALSE if RST is TRUE.
l The output changes on each rising edge of the IN input, if RST is FALSE.

FBD Language Example

112 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example

IL Language Example

(* MyFlipFlop is declared as an instance of FLIPFLOP function block: *)
Op1: CAL
MyFlipFlop (IN, RST)

FFLD
MyFlipFlop.Q

ST Q1

ST Language Example

(* MyFlipFlop is declared as an instance of FLIPFLOP function block: *)
MyFlipFlop (IN, RST);
Q := MyFlipFlop.Q;

See Also

R

S

SR

3.5.3 f_trig

Function Block - Falling pulse detection.

Inputs
Input Data Type Range Unit Default Description

CLK BOOL Boolean signal.

Outputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 113

KAS - PLC Library | 3 PLC Standard Libraries

Output Data Type Range Unit Description

Q BOOL TRUE when the input changes from TRUE to FALSE.

Remarks
l It is recommended to use declared instances of R_TRIG or F_TRIG function blocks.

l This is to avoid contingencies during an Online Change.

Truth Table

CLK CCLK (prev) Q

0 0 0

0 1 1

1 0 0

1 1 0

FBD Language Example

FFLD Language Example
l In the FFLD Language,]P[and]N[contacts can be used.

IL Language Example

(* MyTrigger is declared as an instance of F_TRIG function block *)
Op1: CAL MyTrigger (CLK)
LD MyTrigger.Q
ST Q

ST Language Example

(* MyTrigger is declared as an instance of F_TRIG function block. *)
MyTrigger (CLK);
Q := MyTrigger.Q;

See Also

r_trig

114 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.5.4 QOR

Operator - Counts the number of TRUE inputs.

Inputs
Input Data Type Range Unit Default Description

IN1 INn BOOL Boolean inputs.

Outputs
Output Data Type Range Unit Description

Q DINT Number of inputs being TRUE.

Remarks
l The block accepts a non-fixed number of inputs.

FBD Language Example
The block can have a maximum of 16 inputs.

FFLD Language Example
The block can have a maximum of 16 inputs.

IL Language Example

Op1: LD IN1
QOR IN2, IN3
ST Q

ST Language Example

Q := QOR (IN1, IN2);
Q := QOR (IN1, IN2, IN3, IN4, IN5, IN6);

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 115

KAS - PLC Library | 3 PLC Standard Libraries

3.5.5 R
Operator - Force a Boolean output to FALSE.

Inputs
Input Data Type Range Unit Default Description

RESET BOOL Condition.

Outputs
Output Data Type Range Unit Description

Q BOOL Output to be forced.

Remarks
None

Truth Table

RESET Q (prev) Q

0 0 0

0 1 1

1 0 0

1 1 0

FBD Language Example
l In the FBD Language, RS and SR function blocks are preferred.

l Use "RS" (➜ p. 117) or "SR" (➜ p. 122) function blocks.
l (S) and (R) coils can be used.

FFLD Language Example
l In the FFLD Language, they are represented by (S) and (R) coils.

Example: Use of R coil:

IL Language Example
l In the IL Language, S and R operators are available as standard instructions.

Op1: FFLD RESET
R Q (* Q is forced to FALSE if RESET is TRUE *)

(* Q is unchanged if RESET is FALSE *)

116 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example
Not available.

See Also

l "RS" (➜ p. 117)
l "S" (➜ p. 119)
l "SR" (➜ p. 122)

3.5.6 RS

Function Block - Reset dominant bistable.

Inputs
Input Data Type Range Unit Default Description

SET BOOL Condition for forcing to TRUE.

RESET1 BOOL Condition for forcing to FALSE.
Highest priority command.

Outputs
Output Data Type Range Unit Description

Q BOOL Output to be forced.

Remarks
l The output is unchanged when both inputs are FALSE.
l When both inputs are TRUE, the output is forced to FALSE. (reset dominant)

Truth Table

SET RESET1 Q1
prev

Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 117

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example

IL Language Example

(* MyRS is declared as an instance of RS function block *)
Op1: CAL MyRS (SET, RESET1)

FFLD MyRS.Q1
ST Q1

ST Language Example

(* MyRS is declared as an instance of RS function block *)
MyRS (SET, RESET1);
Q1 := MyRS.Q1;

See Also

l "R" (➜ p. 116)
l "RS" (➜ p. 117)
l "SR" (➜ p. 122)

3.5.7 r_trig

Function Block - Rising pulse detection.

Inputs
Input Data Type Range Unit Default Description

CLK BOOL Boolean signal.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE when the input changes from FALSE to TRUE.

Remarks

118 Kollmorgen® | kdn.kollmorgen.com | December 2024

l It is recommended to use declared instances of R_TRIG or F_TRIG function blocks.
l This is to avoid contingencies during an Online Change.

Truth Table

CLK CCLK (prev) Q

0 0 0

0 1 0

1 0 1

1 1 0

FBD Language Example

FFLD Language Example
l In the FFLD Language,]P[and]N[contacts can be used.
l The input signal is the rung.
l The rung is the output.

IL Language Example

(* MyTrigger is declared as an instance of R_TRIG function block *)
Op1: CAL MyTrigger (CLK)
FFLD MyTrigger.Q
ST Q

ST Language Example

(* MyTrigger is declared as an instance of R_TRIG function block *)
MyTrigger (CLK);
Q := MyTrigger.Q;

See Also

l "f_trig" (➜ p. 113)

3.5.8 S
Operator - Force a Boolean output to TRUE.

Inputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 119

KAS - PLC Library | 3 PLC Standard Libraries

Input Data Type Range Unit Default Description

SET BOOL Condition.

Outputs
Output Data Type Range Unit Description

Q BOOL Output to be forced.

Remarks
None

Truth Table

SET Q prev Q

0 0 0

0 1 1

1 0 1

1 1 1

FBD Language Example
l In the FBD Language, RS and SR function blocks are preferred.

l Use "RS" (➜ p. 117) or "SR" (➜ p. 122) function blocks.
l (S) and (R) coils can be used.

FFLD Language Example
l In the FFLD Language, they are represented by (S) and (R) coils.

Example: Use of S coil:

IL Language Example
l In the IL Language, S and R operators are available as standard instructions.

Op1: FFLD SET
S Q (* Q is forced to TRUE if SET is TRUE *)

(* Q is unchanged if SET is FALSE *)

ST Language Example
Not available.

See Also

120 Kollmorgen® | kdn.kollmorgen.com | December 2024

l "R" (➜ p. 116)
l "RS" (➜ p. 117)
l "SR" (➜ p. 122)

3.5.9 sema

Function Block - Semaphore.

Inputs
Input Data Type Range Unit Default Description

CLAIM BOOL Takes the semaphore.

RELEASE BOOL Releases the semaphore.

Outputs
Output Data Type Range Unit Description

BUSY BOOL TRUE if semaphore is busy.

Remarks
The function block implements this algorithm:

BUSY := mem;
if CLAIM then

mem := TRUE;
else if RELEASE then

BUSY := FALSE;
mem := FALSE;

end_if;

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the CLAIM command.

l The output rung is the BUSY output signal.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 121

KAS - PLC Library | 3 PLC Standard Libraries

(* MySema is a declared instance of SEMA function block *)
Op1: CAL MySema (CLAIM, RELEASE)

FFLD MyBlinker.BUSY
ST BUSY

ST Language Example

(* MySema is a declared instance of SEMA function block *)
MySema (CLAIM, RELEASE);
BUSY := MyBlinker.BUSY;

3.5.10 SR

Function Block - Set dominant bistable.

Inputs
Input Data Type Range Unit Default Description

SET1 BOOL Condition for forcing to TRUE.
Highest priority command.

RESET BOOL Condition for forcing to FALSE.

Outputs
Output Data Type Range Unit Description

Q BOOL Output to be forced.

Remarks
l The output is unchanged when both inputs are FALSE.
l When both inputs are TRUE, the output is forced to FALSE. (set dominant)

Truth Table

SET1 RESET Q1
prev

Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

122 Kollmorgen® | kdn.kollmorgen.com | December 2024

SET1 RESET Q1
prev

Q1

1 1 0 1

1 1 1 1

FBD Language Example

FFLD Language Example
l The SET1 command is the rung.

l The rung is the output.

IL Language Example

(* MySR is declared as an instance of SR function block *)
Op1: CAL MySR (SET1, RESET)
 FFLD MySR.Q1
 ST Q1

ST Language Example

(* MySR is declared as an instance of SR function block *)
MySR (SET1, RESET);
Q1 := MySR.Q1;

See Also

l "R" (➜ p. 116)
l "RS" (➜ p. 117)
l "S" (➜ p. 119)

3.5.11 XOR / XORN

Operator - Performs an exclusive OR of all inputs.

Inputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 123

KAS - PLC Library | 3 PLC Standard Libraries

Input Data Type Range Unit Default Description

IN1 BOOL First Boolean input.

IN2 BOOL Second Boolean input.

Outputs
Output Data Type Range Unit Description

Q BOOL Exclusive OR of all inputs.

Remarks
l The block is called =1 in FBD and FFLD languages.

Truth Table

IN1 IN2 Q
0 0 0

0 1 1

1 0 1

1 1 0

FBD Language Example

FFLD Language Example
l The first input is the rung.
l The rung is the output.

IL Language Example
l In the IL language, the XOR instruction performs an exclusive OR between the current result and the
operand.

l The current result must be Boolean.
l The XORN instruction performs an exclusive between the current result and the Boolean negation
of the operand.

Op1: FFLD IN1
XOR IN2

124 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Q (* Q is equal to: IN1 XOR IN2 *)
Op2: FFLD IN1

XORN IN2
ST Q (* Q is equal to: IN1 XOR (NOT IN2) *)

ST Language Example

Q := IN1 XOR IN2;
Q := IN1 XOR IN2 XOR IN3;

See Also

l AND ANDN &
l "NOT" (➜ p. 248)
l OR / ORN

3.6 Clock Management Functions (Real Time)
l "All Functions (Alphabetically)" (➜ p. 125)

l "Format the Present Date / Time" (➜ p. 126)
l "Read the Real Time Clock" (➜ p. 126)
l "Time Zone and Clock Synchronization" (➜ p. 126)
l "Triggering Operations" (➜ p. 127)

3.6.1 All Functions (Alphabetically)

Name Description

day_time Format the present date / time to a string.

DTAt Generate a pulse at designated time stamp (date and time).

DTCurDate Get the present date stamp.

DTCurDateTime Get the present date and time stamp.

DTCurTime Get the present time stamp.

DTDay Get the day of the month from the date stamp.

DTEvery Generate a pulse signal with long period.

DTFormat Format the present date/time to a string with a custom format.

DTGetNTPServer Read the NTP server address.

DTGetNTPSync Read the NTP synchronization enable state.

DTGetTimeZone Read the Time Zone.

DTHour Get the hours from the time stamp.

DTListTimeZones List the time zones available on the controller.

DTMake Builds the date and time stamps according to DT conventions.

DTMin Get the minutes from the time stamp.

DTMonth Get the month from the date stamp.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 125

KAS - PLC Library | 3 PLC Standard Libraries

Name Description

DTMs Get the milliseconds from the time stamp.

DTSec Get the seconds from the time stamp.

DTSetDateTime Sets the local date and time.

DTSetNTPServer Set the NTP server address.

DTSetNTPSync Set the NTP synchronization enable state.

DTSetTimeZone Set the time zone.

DTYear Get the year from the date stamp.

l A real-time clock may not be available on all controller hardware models.
See the controller hardware specifications for real-time clock availability.

l The AKD PDMM and PCMM reset the date and time when powered-on.
The reset is to Jan 1, 1970 00:00:00.
The elapsed time from device power-on can be determined from the Real Time Clock functions.

l PCMM2G does not reset the date and time when powered on.

3.6.1.1 Format the Present Date / Time
These functions format the present date/time to a string:

Name Description

day_time Format the present date / time to a string.

DTFormat Format the present date/time to a string with a custom format.

3.6.1.2 Read the Real Time Clock
These functions read the real time clock of the target system:

Name Description

DTCurDate Get the present date stamp.

DTCurDateTime Get the present date and time stamp.

DTCurTime Get the present time stamp.

DTDay Get the day of the month from the date stamp.

DTHour Get the hours from the time stamp.

DTMake Builds the date and time stamps according to DT conventions.

DTMin Get the minutes from the time stamp.

DTMonth Get the month from the date stamp.

DTMs Get the milliseconds from the time stamp.

DTSec Get the seconds from the time stamp.

DTYear Get the year from the date stamp.

3.6.1.3 Time Zone and Clock Synchronization
These function blocks configure the time zone and clock synchronization for the controller.

126 Kollmorgen® | kdn.kollmorgen.com | December 2024

Name Description

DTGetNTPServer Read the NTP server address.

DTGetNTPSync Read the NTP synchronization enable state.

DTGetTimeZone Read the Time Zone.

DTListTimeZones List the time zones available on the controller.

DTSetDateTime Sets the local date and time.

DTSetNTPServer Set the NTP server address.

DTSetNTPSync Set the NTP synchronization enable state.

DTSetTimeZone Set the time zone.

3.6.1.4 Triggering Operations
These functions are used for triggering operations:

Name Description

DTAt Generate a pulse at designated time stamp (date and time).

DTEvery Generate a pulse signal with long period.

3.6.2 day_time

Function - Format the present date / time to a string.

Inputs
Input Data Type Range Unit Default Description

SEL DINT 0 to 2 N/A No default Format string.

Outputs
Output Data Type Range Unit Description

Q STRING No range N/A String containing formatted date or time.

Remarks

PCMM generation 1 controllers do not have real-time clock hardware.
PCMM2G does have re-time clock hardware.
Real-time clock may not be available on all controller hardware models.
See the controller hardware specifications for real-time clock availability.

Valid values of the SEL input are:

Value Description
0 (default) Current date - format: YYYY/MM/DD.

1 Current time - format: HH:MM:SS.

2 Day of the week.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 127

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example

Op1: LD SEL
DAY_TIME
ST Q

ST Language Example

Q := DAY_TIME (SEL);

See Also

DTFormat

3.6.3 DTAt

Function Block - Generate a pulse at designated time stamp (date and time).

3.6.3.1 Inputs
Input Data

Type Range Unit Default Description

Year DINT 1900 to 2200 Years No default Year of the time stamp (e.g., 2006).

Month DINT 1 to 12 Months No default Month of the time stamp (1 =
January).

Day DINT 1 to 31 Days No default Day of the time stamp .

TmOfDay TIME 0 to 86,399,999 Milliseconds No default Time of day of the time stamp.

RST BOOL FALSE, TRUE N/A No default Reset command.

3.6.3.2 Outputs

128 Kollmorgen® | kdn.kollmorgen.com | December 2024

Output Data Type Range Unit Description

QAt BOOL FALSE, TRUE N/A Pulse signal.

QPast BOOL FALSE, TRUE N/A True if elapsed.

Remarks

The real-time clock may not be available on all controller hardware models.
See the controller hardware specifications for real-time clock availability.

l Parameters are not updated constantly.
They are taken into account when only:

l The first time the block is called.
l When the reset input (RST) is TRUE.

l In these two situations, the outputs are reset to FALSE.
l The first time the block is called with RST=FALSE and the specified date/stamp is passed:

l The output QPAST is set to TRUE.
l The output QAT is set to TRUE for one cycle only (pulse signal).

l Highest units are ignored if set to 0 (zero).
l Example: If arguments are year=0, month=0, day = 3, tmofday=t#10h, the block
triggers on the next 3rd day of the month at 10h.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the block is activated only if the input rung is TRUE.
l Called only if EN if TRUE.

IL Language Example

(* MyDTAT is a declared instance of DTAT function block. *)
Op1: CAL
MyDTAT (YEAR, MONTH, DAY, TMOFDAY, RST)
FFLD MyDTAT.QAT
ST QAT

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 129

KAS - PLC Library | 3 PLC Standard Libraries

FFLD MyDTATA.QPAST
ST QPAST

ST Language Example

(* MyDTAT is a declared instance of DTAT function block. *)
MyDTAT (YEAR, MONTH, DAY, TMOFDAY, RST);
QAT := MyDTAT.QAT;
QPAST := MyDTATA.QPAST;

See Also

l DTEvery
l Clock Management Functions (Real Time)

3.6.4 DTCurDate

Function - Get the present date stamp.

Inputs

There are no Inputs for this function / function block.

Outputs
Output Data Type Range Unit Description

Q DINT No range N/A Numerical stamp representing the current date.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTCurDate ();

130 Kollmorgen® | kdn.kollmorgen.com | December 2024

See Also

l "DTDay" (➜ p. 133)
l "DTMonth" (➜ p. 148)
l "DTYear" (➜ p. 159)

3.6.5 DTCurDateTime

Function Block - Get the present date and time stamp.

Inputs
Input Data Type Range Unit Default Description

Local BOOL FALSE, TRUE N/A No default l TRUE if local time is requested.
l FALSE if GMT is requested.

Outputs
Output Data Type Range Unit Description

Year DINT 1900 to 2200 Years Present year.

Month DINT 1 to 12 Months Present month.

Day DINT 1 to 31 Days Present day.

Hour DINT 0 to 23 Hours Present time: hours.

Min DINT 0 to 59 Minutes Present time: minutes.

Sec DINT 0 to 60 Seconds Present time: seconds.

MSec DINT 0 to 999 Milliseconds Present time: milliseconds.

TmOfDay TIME 0 to 86,399,999 Milliseconds Present time of day (milliseconds since
midnight).

DST BOOL FALSE, TRUE N/A Indicates if the time is in:

l Daylight saving time (DST = TRUE)
l Standard time (DST = FALSE)

Remarks
None

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 131

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example

IL Language Example
Not available.

ST Language Example

Inst_DTCurDateTime(useLocalTime);
localYear := Inst_DTCurDateTime.Year;
localMonth := Inst_DTCurDateTime.Month;

132 Kollmorgen® | kdn.kollmorgen.com | December 2024

localDay := Inst_DTCurDateTime.Day;
localHour := Inst_DTCurDateTime.Hour;
localMin := Inst_DTCurDateTime.Min;
localSec := Inst_DTCurDateTime.Sec;
localMSec := Inst_DTCurDateTime.MSec;
localTmOfDay := Inst_DTCurDateTime.TmOfDay;
localDST := Inst_DTCurDateTime.DST;

3.6.6 DTCurTime

Function - Get the present time stamp.

Inputs
None

Outputs
Output Data Type Range Unit Description

Q DINT 0 to 86,399,999 Milliseconds Present milliseconds of the time.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTCurTime ();

See Also

l "DTHour" (➜ p. 143)
l "DTMin" (➜ p. 147)
l "DTMs" (➜ p. 149)
l "DTSec" (➜ p. 150)

3.6.7 DTDay

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 133

KAS - PLC Library | 3 PLC Standard Libraries

Function - Get the day of the month from the date stamp.

Inputs
Input Data Type Range Unit Default Description

Date DINT No range N/A No default Numerical stamp representing a date.

Outputs
Output Data Type Range Unit Description

Q DINT 1 to 31 N/A Day of the month of the date.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTDay (iDate);

See Also

l "DTCurDate" (➜ p. 130)
l "DTMonth" (➜ p. 148)
l "DTYear" (➜ p. 159)

3.6.8 DTGetNTPServer

Function Block - Read the NTP server address.

This function block is specific for PCMM2G only.

Inputs
Input Data

Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to read the NTP server
address.

134 Kollmorgen® | kdn.kollmorgen.com | December 2024

Outputs
Output Data

Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

l 16200 = Could not read NTP server configuration file.

NTP
Server

STRING No range N/A The address of the NTP server used for clock
synchronization.

Remarks
None

FBD Language Example

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 135

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
Not available.

ST Language Example

// read the NTP server address
Inst_DTGetNTPServer(bGetNTPServer);
if Inst_DTGetNTPServer.Done then
 bGetNTPServer := false;

if NOT Inst_DTGetNTPServer.Error then
 NTPServer := Inst_DTGetNTPServer.NTPServer;

else
 ErrorID := Inst_DTGetNTPServer.ErrorID;

end_if;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTGetNTPServer" (➜ p. 134)
l "DTSetNTPServer" (➜ p. 153)
l "DTSetNTPSync" (➜ p. 155)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.9 DTGetNTPSync

Function Block - Read the NTP synchronization enable state.

This function block is specific for PCMM2G only.

Inputs

136 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data
Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to read the synchronization
enable state.

Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

SynchEn BOOL FALSE, TRUE N/A The present NTP synchronization state.

l TRUE = synchronization enabled.
l FALSE = synchronization disabled.

Remarks
None

FBD Language Example

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 137

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
Not available.

ST Language Example

// read the NTP synchronization state
Inst_DTGetNTPSync(bGetNTPSync);
if Inst_DTGetNTPSync.Done then
 bGetNTPSync := false;

if NOT Inst_DTGetNTPSync.Error then
 bNTPSyncEnable := Inst_DTGetNTPSync.SynchEn;

else
 ErrorID := Inst_DTGetNTPSync.ErrorID;

end_if;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTSetNTPSync" (➜ p. 155)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.10 DTGetTimeZone

Function Block - Read the Time Zone.

This function block is specific for PCMM2G only.

3.6.10.1 Inputs
Input Data Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to read the time zone.

138 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.6.10.2 Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

TimeZone STRING No range N/A The time zone the controller should use.

Remarks
None

FBD Language Example

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 139

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
Not available.

ST Language Example

// read the configured time zone
Inst_DTGetTimeZone(bGetDTZone);
if Inst_DTGetTimeZone.Done then
 bGetDTZone := false;

if NOT Inst_DTGetTimeZone.Error then
 TimeZone := Inst_DTGetTimeZone.TimeZone;

else
 ErrorID := Inst_DTGetTimeZone.ErrorID;

end_if;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTSetTimeZone" (➜ p. 157)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.11 DTEvery

Function Block - Generate a pulse signal with long period.

Inputs

140 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data
Type Range Unit Default Description

Run BOOL FALSE, TRUE N/A No default When TRUE, the signal generation is
enabled.

Days DINT 1 to 65535 Days No default Period : number of days.

TM Time 0 to 86,399,999 Milliseconds No default Rest of the period (if not a multiple of
24h).

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE N/A Pulse signal.

Remarks
l This function block provides a pulse signal with a period of more than 24h.

l The period is expressed as:
DAYS * 24h + TM

l Example: Specifying DAYS=1 and TM=6h means a period of 30 hours.

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example

(* MyDTEVERY is a declared instance of DTEVERY function block. *)
MyDTEVERY (RUN, DAYS, TM);
Q := MyDTEVERY.Q;

See Also

l DTAt
l Clock Management Functions (Real Time)

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 141

KAS - PLC Library | 3 PLC Standard Libraries

3.6.12 DTFormat

Function - Format the present date/time to a string with a custom format.

Inputs
Input Data Type Range Unit Default Description

FMT STRING No range N/A '%Y/%m/%d - %H:%M:%S' Format string

Outputs
Output Data Type Range Unit Description

Q STRING No range N/A String containing formatted date or time.

Remarks

The real-time clock may not be available on all controller hardware models.
See the controller hardware specifications for real-time clock availability.

l The format string may contain any character.
l Special markers beginning with the % character indicates a date/time information:

Marker Description

%Y Year including century (e.g., 2006)

%y Year without century (e.g., 06)

%m Month (1..12)

%d Day of the month (1..31)

%H Hours (0..23)

%M Minutes (0..59)

%S Seconds (0..59)

%T Milliseconds (0..999)

Example

(* we are at July 04th 2006, 18:45:20 *)
Q := DTFORMAT ('Today is %Y/%m/%d -%H:%M:%S');

(* Q is 'Today is 2006/07/04 - 18:45:20 *)

FBD Language Example

FFLD Language Example

142 Kollmorgen® | kdn.kollmorgen.com | December 2024

l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example

Op1: LD FMT
DTFORMAT
ST Q

ST Language Example

Q := DTFORMAT (FMT);

See Also

day_time

3.6.13 DTHour

Function - Get the hours from the time stamp.

Inputs
Input Data

Type Range Unit Default Description

Time DINT 0 to 86,399,999 Milliseconds No default The number of milliseconds that have
passed since midnight.
This value is typically retrieved from
DTCurTime.

Outputs
Output Data Type Range Unit Description

Q DINT 0 to 23 Hours Hours of the time.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 143

KAS - PLC Library | 3 PLC Standard Libraries

Not available.

IL Language Example
Not available.

ST Language Example

Q := DTHour (iTime);

See Also

l "DTCurTime" (➜ p. 133)
l "DTMin" (➜ p. 147)
l "DTMs" (➜ p. 149)
l "DTSec" (➜ p. 150)

3.6.14 DTListTimeZones

Function Block - List the time zones available on the controller.

This function block is specific for PCMM2G only.

Inputs
Input Data

Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to read the available time
zones.

TimeZones STRING
[]

No range N/A No default An array where the list of time zones
available on the system are copied.
This is effectively an output parameter, but
because it is an array, it must be an input.

Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if Error output is TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

TZCount DINT No range N/A The number of time zones on the system.

Remarks
None

144 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example

// read the list of supported time zones
Inst_DTListTimeZones(bListDTZones, TimeZones);
if NOT Inst_DTListTimeZones.Error then
 TZCount := Inst_DTListTimeZones.TZCount;
else
 ErrorID := Inst_DTListTimeZones.ErrorID;
end_if;

if Inst_DTListTimeZones.Done then
 bListDTZones := false;
end_if;

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 145

KAS - PLC Library | 3 PLC Standard Libraries

See Also

l "DTGetTimeZone" (➜ p. 138)
l "DTSetTimeZone" (➜ p. 157)

3.6.15 DTMake

Function Block - Builds the date and time stamps according to DT conventions.

The DT conventions are used in VSI functions to manage variable date and time stamps.

Inputs
Input Data Type Range Unit Default Description

Year DINT 1900 to 32767 Year No default Year specification.
Example: 2024.

Month DINT 1 to 12 Month No default Month in interval.

Day DINT 1 to 31 Day No default Day of the month in interval.

Hour DINT 0 to 23 Hour No default Hour of the day.

Minute DINT 0 to 59 Minute No default Minute of the day.

Second DINT 0 to 60 Second No default Second of the day.

MSec DINT 0 to 999 N/A No default Milliseconds of the day.

Outputs
Output Data Type Range Unit Description

Ddate DINT No range N/A DT-like date stamp or 0 (zero) if some inputs are invalid.

Dtime DINT No range N/A DT-like date stamp or 0 (zero) if some inputs are invalid.

Figure 4-1: DTMake

Remarks
None

146 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example
Not available.

FFLD Language Example

IL Language Example
Not available.

ST Language Example

Inst_DTMake1(2024, 7, 10, 6, 37, 30, 525);
dDate := Inst_DTMake1.Ddate;
dTime := Inst_DTMake1.Dtime;

3.6.16 DTMin

Function - Get the minutes from the time stamp.

Inputs
Input Data

Type Range Unit Default Description

Time DINT 0 to 86,399,999 Milliseconds No default The number of milliseconds that have
passed since midnight.
This value is typically retrieved from
DTCurTime.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 147

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Q DINT 0 to 59 Minutes Minutes of the time.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTMin (iTime);

See Also

l "DTCurTime" (➜ p. 133)
l "DTHour" (➜ p. 143)
l "DTMs" (➜ p. 149)
l "DTSec" (➜ p. 150)

3.6.17 DTMonth

Function - Get the month from the date stamp.

Inputs
Input Data Type Range Unit Default Description

Date DINT No range N/A No default Numerical stamp representing a date.

Outputs
Output Data Type Range Unit Description

Q DINT 1 to 12 N/A Month of the date.

Remarks
None

148 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTMonth (iDate);

See Also

l "DTCurDate" (➜ p. 130)
l "DTDay" (➜ p. 133)
l "DTYear" (➜ p. 159)

3.6.18 DTMs

Function - Get the milliseconds from the time stamp.

Inputs
Input Data

Type Range Unit Default Description

Time DINT 0 to 86,399,999 Milliseconds No default The number of milliseconds that have
passed since midnight.
This value is typically retrieved from
DTCurTime.

Outputs
Output Data Type Range Unit Description

Q DINT 0 to 999 Milliseconds Present milliseconds of the time.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 149

KAS - PLC Library | 3 PLC Standard Libraries

Not available.

IL Language Example
Not available.

ST Language Example

Q := DTMs (iTime);

See Also

l "DTCurTime" (➜ p. 133)
l "DTHour" (➜ p. 143)
l "DTMin" (➜ p. 147)
l "DTSec" (➜ p. 150)

3.6.19 DTSec

Function - Get the seconds from the time stamp.

Inputs
Input Data

Type Range Unit Default Description

Time DINT 0 to 86,399,999 Milliseconds No default The number of milliseconds that have
passed since midnight.
This value is typically retrieved from
DTCurTime.

Outputs
Output Data Type Range Unit Description

Q DINT 0 to 59 Seconds Seconds of the time.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

150 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example

Q := DTSec (iTime);

See Also

l "DTCurTime" (➜ p. 133)
l "DTHour" (➜ p. 143)
l "DTMin" (➜ p. 147)
l "DTMs" (➜ p. 149)

3.6.20 DTSetDateTime

Function Block - Sets the local date and time.

This function block is specific for PCMM2G only.

Inputs

If the UTC time needs to be set, change the time zone to UTC using "DTSetTimeZone" (➜ p. 157), set the time,
then restore the time zone.

Input Data
Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to set the local date and
time.

Year DINT 1900 to 2200 Year No default The local date’s new value of the year.

Month DINT 1 to 12 Month No default The local date’s new value of the month.

Day DINT 1 to 31 Day No default The local date’s new value of the day.

Hour DINT 0 to 23 Hour No default The local date’s new value of the hour.

Minute DINT 0 to 59 Minute No default The local date’s new value of the minute.

Second DINT 0 to 60 Second No default The local date’s new value of the second.

60 is valid because leap seconds may have
a value of 60.

Outputs
Output Data

Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 151

KAS - PLC Library | 3 PLC Standard Libraries

Output Data
Type Range Unit Description

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

l 16202 = Cannot set date / time when NTP synchronization
is active.

l 16203 = Invalid date / time value specified.

Remarks
None

FBD Language Example

FFLD Language Example

152 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
Not available.

ST Language Example

// write the date and time
Inst_DTSetDateTime(bSetDateTime, Year, Month, Day, Hour, Minute, Second);
if Inst_DTSetDateTime.Done then
 bSetDateTime := false;

 bError := Inst_DTSetDateTime.Error;
 ErrorID := Inst_DTSetDateTime.ErrorID;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTSetTimeZone" (➜ p. 157)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.21 DTSetNTPServer

Function Block - Set the NTP server address.

This function block is specific for PCMM2G only.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 153

KAS - PLC Library | 3 PLC Standard Libraries

Inputs
Input Data

Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to set the NTP server
address.

NTP
Server

STRING No range N/A No default The address of the NTP server used for clock
synchronization.

Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

Remarks
None

FBD Language Example

FFLD Language Example

154 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
Not available.

ST Language Example

// configure the NTP server address
Inst_DTSetNTPServer(bSetNTPServer, NTPServer);
if Inst_DTSetNTPServer.Done then
 bSetNTPServer := false;
 bError := Inst_DTSetNTPServer.Error;
 ErrorID := Inst_DTSetNTPServer.ErrorID;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTGetNTPServer" (➜ p. 134)
l "DTGetNTPSync" (➜ p. 136)
l "DTSetNTPSync" (➜ p. 155)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.22 DTSetNTPSync

Function Block - Set the NTP synchronization enable state.

This function block is specific for PCMM2G only.

Inputs
Input Data

Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to set the synchronization
enable state.

SynchEn BOOL FALSE, TRUE N/A No default l TRUE = enable NTP synchronization.
l FALSE = disable NTP synchronization.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 155

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

Remarks
None

FBD Language Example

FFLD Language Example

IL Language Example

156 Kollmorgen® | kdn.kollmorgen.com | December 2024

Not available.

ST Language Example

// enable NTP server synchronization
Inst_DTSetNTPSync(bSetNTPSync, bNTPSyncEnable);
if Inst_DTSetNTPSync.Done then
 bSetNTPSync := false;

 bError := Inst_DTSetNTPSync.Error;
 ErrorID := Inst_DTSetNTPSync.ErrorID;
end_if;

See Also

l "DTCurDateTime" (➜ p. 131)
l "DTGetNTPServer" (➜ p. 134)
l "DTGetNTPSync" (➜ p. 136)
l "DTSetNTPServer" (➜ p. 153)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.23 DTSetTimeZone

Function Block - Set the time zone.

This function block is specific for PCMM2G only.

Inputs
Input Data Type Range Unit Default Description

Execute BOOL FALSE, TRUE N/A No default If TRUE, request to set the time zone.

TimeZone STRING No range N/A No default The time zone the controller should use.

Outputs
Output Data Type Range Unit Description

Done BOOL FALSE, TRUE N/A If TRUE, the command completed successfully.

Error BOOL FALSE, TRUE N/A If TRUE, an error has occurred.

ErrorID DINT No range N/A Indicates the error if the Error output is set to TRUE.
Error Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function
block.

l 16201 = Invalid time zone.

Remarks
None

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 157

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example

// configure the time zone
Inst_DTSetTimeZone(bSetDTZone, TimeZone);
if Inst_DTSetTimeZone.Done then
 bSetDTZone := false;

 bError := Inst_DTSetTimeZone.Error;
 ErrorID := Inst_DTSetTimeZone.ErrorID;
end_if;

See Also

158 Kollmorgen® | kdn.kollmorgen.com | December 2024

l "DTCurDateTime" (➜ p. 131)
l "DTGetTimeZone" (➜ p. 138)
l "DTListTimeZones" (➜ p. 144)
l "List of Date / Time / NTP ErrorID Codes" (➜ p. 159)

3.6.24 DTYear

Function - Get the year from the date stamp.

Inputs
Input Data Type Range Unit Default Description

Date DINT No range N/A No default Numerical stamp representing a date.

Outputs
Output Data Type Range Unit Description

Q DINT No range N/A Year of the date.

Remarks
None

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

ST Language Example

Q := DTYear (iDate);

See Also

l "DTCurDate" (➜ p. 130)
l "DTDay" (➜ p. 133)
l "DTMonth" (➜ p. 148)

3.6.25 List of Date / Time / NTP ErrorID Codes

l 23 = Internal error.
See the controller log for details.

l 15000 = Controller type does not support this function block.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 159

KAS - PLC Library | 3 PLC Standard Libraries

l 16200 = Could not read NTP server configuration file.
l 16201 = Invalid time zone.
l 16202 = Cannot set date / time when NTP synchronization is active.
l 16203 = Invalid date / time value specified.

3.7 Comparison Operations

These are the standard operators and blocks that perform comparisons:

Operator Description

CMP Comparison with detailed outputs for integer inputs.

EQ = Test if the first input is equal to the second input.

GE >= Tests if the first input is greater than or equal to the second input.

GT > Test if the first input is greater than the second input.

LE <= Test if the first input is less than or equal to the second input.

LT < Test if the first input is less than the second input.

NE <> Test if the first input is not equal to the second input.

3.7.1 CMP

Function Block - Comparison with detailed outputs for integer inputs.

Inputs
Input Data Type Range Unit Default Description

IN1 DINT First value.

IN2 DINT Second value.

Outputs
Output Data Type Range Unit Description

EQ BOOL TRUE if IN1 = IN2.

GT BOOL TRUE if IN1 > IN2.

LT BOOL TRUE if IN1 < IN2.

Remarks
None

FBD Language Example

160 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l The rung input (EN) validates the operation.

l The rung output is the result of LT (lower than) comparison).
l The comparison is executed only if EN is TRUE.

IL Language Example

(* MyCmp is declared as an instance of CMP function block *)
Op1: CAL MyCmp (IN1, IN2)

LD MyCmp.LT
ST bLT
LD MyCmp.EQ
ST bEQ
LD MyCmp.GT
ST bGT

ST Language Example

(* MyCmp is declared as an instance of CMP function block. *)
MyCMP (IN1, IN2);
bLT := MyCmp.LT;
bEQ := MyCmp.EQ;
bGT := MyCmp.GT;

See Also

l EQ =
l GE >=
l GT >
l LE <=
l LT <
l NE <>

3.7.2 GE >=

Operator - Tests if the first input is greater than or equal to the second input.

Inputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 161

KAS - PLC Library | 3 PLC Standard Libraries

Input Data Type Range Unit Default Description

IN1 ANY_NUM First input.

IN2 ANY_NUM Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 >= IN2.

Remarks
l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung is the result of the comparison.
l The comparison is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the GE instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
GE IN2
ST Q (* Q is true if IN1 >= IN2 *)

ST Language Example

Q := IN1 >= IN2;

162 Kollmorgen® | kdn.kollmorgen.com | December 2024

See Also

l CMP
l EQ =
l GT >
l LE <=
l LT <
l NE <>

3.7.3 GT >

Operator - Test if the first input is greater than the second input.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 > IN2.

Remarks
l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung is the result of the comparison.
l The comparison is executed only if EN is TRUE.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 163

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
l In the IL Language, the GT instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
GT IN2
ST Q (* Q is true if IN1 > IN2 *)

ST Language Example

Q := IN1 > IN2;

See Also

l CMP
l EQ =
l GE >=
l LE <=
l LT <
l NE <>

3.7.4 EQ =

Operator - Test if the first input is equal to the second input.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 = IN2.

Remarks
l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

164 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Equality comparisons cannot be used with TIME variables.
l This is because the timer actually has the resolution of the target cycle and test can be unsafe as
some values can never be reached.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung is the result of the comparison.
l The comparison is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the EQ instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
EQ IN2
ST Q (* Q is true if IN1 = IN2 *)

ST Language Example

Q := IN1 = IN2;

See Also

l CMP
l GE >=
l GT >
l LE <=
l LT <
l NE <>

3.7.5 NE <>

Operator - Test if the first input is not equal to the second input.

Inputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 165

KAS - PLC Library | 3 PLC Standard Libraries

Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 is not equal to IN2.

Remarks
l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

l Equality comparisons cannot be used with TIME variables.
l This is because the timer actually has the resolution of the target cycle and test can be unsafe as
some values can never be reached.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung is the result of the comparison.
l The comparison is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the NE instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
NE IN2
ST Q (* Q is true if IN1 is not equal to IN2 *)

166 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example

Q := IN1 <> IN2;

See Also

l CMP
l EQ =
l GE >=
l GT >
l LE <=
l LT <

3.7.6 LE <=

Operator - Test if the first input is less than or equal to the second input.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 <= IN2.

Remarks
l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

FBD Language Example

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 167

KAS - PLC Library | 3 PLC Standard Libraries

l In the FFLD Language, the input rung (EN) enables the operation.
l The output rung is the result of the comparison.

l The comparison is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the LE instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
LE IN2
ST Q (* Q is true if IN1 <= IN2 *)

ST Language Example

Q := IN1 <= IN2;

See Also

l CMP
l EQ =
l GE >=
l GT >
l LT <
l NE <>

3.7.7 LT <

Operator - Test if the first input is less than the second input.

Inputs
Input Data Type Range Unit Default Description

IN1 ANY First input.

IN2 ANY Second input.

Outputs
Output Data Type Range Unit Description

Q BOOL TRUE if IN1 < IN2.

Remarks

168 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Both inputs must have the same type.
l Comparisons can be used with strings.

l With strings, the lexical order is used for comparing the input strings.
l Examples:
ABC is less than ZX.
ABCD is greater than ABC.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung is the result of the comparison.
l The comparison is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the LT instruction performs the comparison between the current result and the
operand.

l The current result and the operand must have the same type.

Op1: FFLD IN1
LT IN2
ST Q (* Q is true if IN1 < IN2 *)

ST Language Example

Q := IN1 < IN2;

See Also

l CMP
l EQ =
l GE >=
l GT >
l LE <=
l NE <>

3.8 Conversion Functions

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 169

KAS - PLC Library | 3 PLC Standard Libraries

l "All Functions (Alphabetically)" (➜ p. 170)
l "Convert Data to Another Data Type" (➜ p. 170)
l "BCD Format Conversions" (➜ p. 170)

3.8.1 All Functions (Alphabetically)

Name Description

any_to_bool Converts the input into Boolean value.

any_to_dint / any_to_udint Converts the input to a 32-bit integer value.

any_to_int / any_to_uint Converts the input to a 16-bit integer value.

any_to_lint / any_to_ulint Converts the input to a long, 64-bit integer value.

any_to_lreal Converts the input into a double precision floating point real value.

any_to_real Converts the input into a single precision floating point real value.

any_to_sint / any_to_usint Converts the input into a short, 8-bit integer value.

any_to_string Converts the input into a character string value.

any_to_time Converts the input into a time value.

bcd_to_bin Converts a Binary Coded Decimal (BCD) value to a binary value.

bin_to_bcd Converts a binary value to a Binary Coded Decimal (BCD) value.

num_to_string Converts a number into a string value.

3.8.1.1 Convert Data to Another Data Type
These are the standard functions for converting a data into another data type.

Name Description

any_to_bool Converts the input into Boolean value.

any_to_dint / any_to_udint Converts the input to a 32-bit integer value.

any_to_int / any_to_uint Converts the input to a 16-bit integer value.

any_to_lint / any_to_ulint Converts the input to a long, 64-bit integer value.

any_to_lreal Converts the input into a double precision floating point real value.

any_to_real Converts the input into a single precision floating point real value.

any_to_sint / any_to_usint Converts the input into a short, 8-bit integer value.

any_to_string Converts the input into a character string value.

any_to_time Converts the input into a time value.

num_to_string Converts a number into a string value.

3.8.1.2 BCD Format Conversions
These are the standard functions performing conversions in BCD format.

BCD conversion functions may not be supported by all targets.

Name Description

bcd_to_bin Converts a Binary Coded Decimal (BCD) value to a binary value.

170 Kollmorgen® | kdn.kollmorgen.com | December 2024

Name Description

bin_to_bcd Converts a binary value to a Binary Coded Decimal (BCD) value.

3.8.2 any_to_bool

Operator - Converts the input into Boolean value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q BOOL Converts the input into Boolean value.

Remarks
l For DINT, REAL, and TIME input data types, the result is FALSE if the input is 0 (zero).

l The result is TRUE in all other cases.
l For STRING inputs, the output is TRUE if the input string is not empty.

l The output is FALSE if the string is empty.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung is the result of the conversion.
l The output rung is FALSE if the EN is FALSE.

IL Language Example
l In the IL Language, the any_to_bool function converts the current result.

Op1: FFLD IN
ANY_TO_BOOL
ST Q

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 171

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

Q := ANY_TO_BOOL (IN);

See Also

l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.3 any_to_dint / any_to_udint

Operator - Converts the input to a 32-bit integer value.

Inputs
Input Data Type Range Unit Default Description

IN ANY 32-bit Input value.

Outputs
Output Data Type Range Unit Description

Q DINT Value converted to a signed double integer (32-bit).

Q UDINT Value converted to an unsigned double integer (32-bit).

Remarks
l The default is 32-bit.
l Can be unsigned with any_to_udint.

Data Type Outputs

l For BOOL input data types, the output is 0 (zero) or 1.
l For REAL input data type, the output is the integer part of the input real.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0 (zero) if the string
does not represent a valid number.

FBD Language Example

172 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_udint converts the current result.

Op1: FFLD IN
ANY_TO_DINT
ST Q

ST Language Example

Q := ANY_TO_DINT (IN);

See Also

l any_to_bool
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.4 any_to_int / any_to_uint

Operator - Converts the input to a 16-bit integer value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q INT Value converted to a signed integer. (16-bit).

Q UINT Value converted to an unsigned integer. (16-bit).

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 173

KAS - PLC Library | 3 PLC Standard Libraries

Remarks
Can be unsigned with any_to_uint.

Data Type Outputs

l For BOOL input data types, the output is 0 (zero) or 1.
l For REAL input data type, the output is the integer part of the input real.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0 (zero) if the string
does not represent a valid number.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_int converts the current result.

Op1: FFLD IN
ANY_TO_INT
ST Q

ST Language Example

Q := ANY_TO_INT (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.5 any_to_lint / any_to_ulint

174 Kollmorgen® | kdn.kollmorgen.com | December 2024

Operator - Converts the input to a long, 64-bit integer value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q LINT Value converted to long, 64-bit integer.

Q ULINT Value converted to long, 64-bit unsigned integer.

Remarks
Can be unsigned with any_to_ulint.

Data Type Outputs

l For BOOL input data types, the output is 0 (zero) or 1.
l For REAL input data type, the output is the integer part of the input real.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0 (zero) if the string
does not represent a valid number.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_lint converts the current result.

Op1: FFLD IN
ANY_TO_LINT
ST Q

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 175

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

Q := ANY_TO_LINT (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.6 any_to_lreal

Operator - Converts the input into a double precision floating point real value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q LREAL Converts the input into a double precision floating point real value.

Remarks
None

Data Type Outputs

l For BOOL input data types, the output is 0.0 or 1.0.
l For DINT input data types, the output is the same number.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0.0 if the string does
not represent a valid number.

FBD Language Example

FFLD Language Example

176 Kollmorgen® | kdn.kollmorgen.com | December 2024

l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.
l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to-lreal converts the current result.

Op1: FFLD IN
ANY_TO_LREAL
ST Q

ST Language Example

Q := ANY_TO_LREAL (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_real
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.7 any_to_real

Operator - Converts the input into a single precision floating point real value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

3.8.7.1 Outputs
Output Data Type Range Unit Description

Q REAL Converts the input into a single precision floating point real value.

Remarks
None

Data Type Outputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 177

KAS - PLC Library | 3 PLC Standard Libraries

l For BOOL input data types, the output is 0.0 or 1.0.
l For DINT input data types, the output is the same number.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0.0 if the string does
not represent a valid number.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_real converts the current result.

Op1: FFLD IN
ANY_TO_REAL
ST Q

ST Language Example

Q := ANY_TO_REAL (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_sint / any_to_usint
l any_to_string
l any_to_time

3.8.8 any_to_time

Operator - Converts the input into a time value.

Inputs

178 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q TIME Converts the input into a time value.

Remarks
l For BOOL input data types, the output is t#0ms or t#1ms.
l For DINT or REAL input data type, the output is the time represented by the input number as a number of
milliseconds.

l For STRING input data types, the output is the time represented by the string or t#0ms if the string does
not represent a valid time.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_time converts the current result.

Op1: FFLD IN
ANY_TO_TIME
ST Q

ST Language Example

Q := ANY_TO_TIME (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 179

KAS - PLC Library | 3 PLC Standard Libraries

l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_string

3.8.9 any_to_sint / any_to_usint

Operator - Converts the input into a short, 8-bit integer value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q SINT Value converted to a signed short integer. (8-bit).

Q USINT Value converted to an unsigned short integer. (8-bit).

Remarks
Can be unsigned with any_to_usint.

Data Type Outputs

l For BOOL input data types, the output is 0 (zero) or 1.
l For REAL input data type, the output is the integer part of the input real.
l For TIME input data types, the output is the number of milliseconds.
l For STRING input data types, the output is the number represented by the string or 0 (zero) if the string
does not represent a valid number.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example

180 Kollmorgen® | kdn.kollmorgen.com | December 2024

l In the IL Language, the any_to_sint converts the current result.

Op1: FFLD IN
ANY_TO_SINT
ST Q

ST Language Example

Q := ANY_TO_SINT (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_real
l any_to_string
l any_to_time

3.8.10 any_to_string

Operator - Converts the input into a character string value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input value.

Outputs
Output Data Type Range Unit Description

Q STRING Converts the input into a character string value.

Remarks
l For BOOL input data types, the output is

l 0 for FALSE.
l 1 for TRUE.

l For DINT, REAL, or TIME input data types, the output is the string representation of the input number.
l This is a number of milliseconds for TIME inputs.

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 181

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the any_to_string function converts the current result.

Op1: FFLD IN
ANY_TO_STRING
ST Q

ST Language Example

Q := ANY_TO_STRING (IN);

See Also

l any_to_bool
l any_to_dint / any_to_udint
l any_to_int / any_to_uint
l any_to_lint / any_to_ulint
l any_to_lreal
l any_to_real
l any_to_sint / any_to_usint
l any_to_time

3.8.11 num_to_string

Function - Converts a number into a string value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Input number.

Width DINT Length of the output string.

Digits DINT Number of digits after decimal point.

Outputs
Output Data Type Range Unit Description

Q STRING Value converted to string.

182 Kollmorgen® | kdn.kollmorgen.com | December 2024

Remarks
This function converts any numerical value to a string.

It allows a specific length and a number of digits after the decimal points.

l If WIDTH is 0 (zero), the string is formatted with the necessary length.

Q := NUM_TO_STRING (1.333333, 0, 2); (* Q is '1.33' *)

l If WIDTH is greater than 0 (zero), the string is completed with leading blank characters in order to match
the value of WIDTH.

Q := NUM_TO_STRING (123.4, 8, 2); (* Q is ' 123.40' *)

l If WIDTH is greater than 0 (zero), the string is completed with trailing blank characters in order to match
the value of WIDTH.

Q := NUM_TO_STRING (123.4, -8, 2); (* Q is '123.40 ' *)

l If DIGITS is 0 (zero) then neither decimal part nor decimal point are added.

Q := NUM_TO_STRING (1.333333, 3, 0); (* Q is ' 1' *)

l If DIGITS is greater than 0 (zero), the corresponding number of decimal digits are added. '0' digits are
added if necessary

Q := NUM_TO_STRING (1.333333, 0, 1); (* Q is '1.3' *)

l If the value is too long for the specified width, the string is filled with '*' characters.

Q := NUM_TO_STRING (1234, 3, 0); (* Q is '***' *)

3.8.12 bcd_to_bin

Function - Converts a Binary Coded Decimal (BCD) value to a binary value.

Inputs
Input Data Type Range Unit Default Description

IN DINT Integer value in BCD.

Outputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 183

KAS - PLC Library | 3 PLC Standard Libraries

Output Data
Type Range Unit Description

Q DINT Converts a Binary Coded Decimal (BCD) value to a binary value.
Value converted to integer or 0 (zero) if IN is not a valid positive BCD
value.

Remarks
l The input must:

l Be positive.
l Represent a valid BCD value.

Truth Table

IN Q

-2 0 (invalid)

0 0

16 (16#10) 10

15 (16#0F) 0 (invalid)

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
BCD_TO_BIN
ST Q

ST Language Example

Q := BCD_TO_BIN (IN);

See Also

184 Kollmorgen® | kdn.kollmorgen.com | December 2024

bin_to_bcd

3.8.13 bin_to_bcd

Function - Converts a binary value to a Binary Coded Decimal (BCD) value.

Inputs
Input Data Type Range Unit Default Description

IN DINT Integer value.

Outputs
Output Data Type Range Unit Description

Q DINT Converts a binary value to a Binary Coded Decimal (BCD) value.
Value converted to BCD or 0 (zero) if IN is less than 0 (zero).

Remarks
l The input must be positive.

Truth Table

IN Q

-2 0 (invalid)

0 0

10 16 (16#10)

22 34 (16#22)

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 185

KAS - PLC Library | 3 PLC Standard Libraries

l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
BIN_TO_BCD
ST Q

ST Language Example

Q := BIN_TO_BCD (IN);

See Also

bcd_to_bin

3.9 Counters
These are the standard function blocks for managing counters:

Function Block Description

CTD / CTDr Down counter.

CTU / CTUr Up counter.

CTUD / CTUDr Up/down counter.

3.9.1 CTD / CTDr

Function Block - Down counter.

Inputs
Input Data Type Range Unit Default Description

CD BOOL Enable counting.
Counter is decreased on each call when CD is TRUE.

LOAD BOOL Re-load command.
Counter is set to PV when called with LOAD to TRUE.

PV DINT Programmed maximum value.

Outputs
Output Data Type Range Unit Description

CV DINT Current value of the counter.

Q BOOL TRUE when counter is empty (i.e., when CV = 0).

Remarks

186 Kollmorgen® | kdn.kollmorgen.com | December 2024

l The counter is empty (CV = 0) when the application starts.
l The counter does not include a pulse detection for CD input.
l Use the "f_trig" (➜ p. 113) or "r_trig" (➜ p. 118) function blocks for counting pulses of CD input signal.
l CTDr, CTUr, and CTUDr function blocks operate exactly as other counters.

l Exception: All Boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included.

FBD Language Example

FFLD Language Example
l The CD is the input rung.

l The output rung is the Q output.

IL Language Example

(* MyCounter is a declared instance of CTD function block. *)
Op1: CAL MyCounter (CD, LOAD, PV)
FFLD MyCounter.Q
ST Q
FFLD MyCounter.CV
ST CV

ST Language Example

(* MyCounter is a declared instance of CTD function block. *)
MyCounter (CD, LOAD, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

See Also

l CTU / CTUr
l CTUD / CTUDr

3.9.2 CTU / CTUr

Function Block - Up counter.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 187

KAS - PLC Library | 3 PLC Standard Libraries

Inputs
Input Data

Type Range Unit Default Description

CU BOOL Enable counting.
Counter is increased on each call when CU is TRUE.

PV DINT Programmed maximum value.

RESET BOOL Reset command.
Counter is reset to 0 when called with RESET to
TRUE.

Outputs
Output Data Type Range Unit Description

CV DINT Current value of the counter.

Q BOOL TRUE when counter is full (i.e., when CV = PV).

Remarks
l The counter is empty (CV = 0) when the application starts.
l The counter does not include a pulse detection for CU input.
l Use the "f_trig" (➜ p. 113) or "r_trig" (➜ p. 118) function blocks for counting pulses of CU input signal.
l CTDr, CTUr, and CTUDr function blocks operate exactly as other counters.

l Exception: All Boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included.

FBD Language Example

FFLD Language Example
l In the FFLD Language, CU is the input rung.

l The output rung is the Q output.

IL Language Example

(* MyCounter is a declared instance of CTU function block. *)
Op1: CAL MyCounter (CU, RESET, PV)
FFLD MyCounter.Q
ST Q

188 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD MyCounter.CV
ST CV

ST Language Example

(* MyCounter is a declared instance of CTU function block. *)
MyCounter (CU, RESET, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

See Also

l CTD / CTDr
l CTUD / CTUDr

3.9.3 CTUD / CTUDr

Function Block - Up/down counter.

Inputs
Input Data

Type Range Unit Default Description

CD BOOL Enable counting.
Counter is decreased on each call when CD is TRUE.

CU BOOL Enable counting.
Counter is increased on each call when CU is TRUE.

LOAD BOOL Re-load command.
Counter is set to PV when called with LOAD to TRUE.

PV DINT Programmed maximum value.

RESET BOOL Reset command.
Counter is reset to 0 when called with RESET to
TRUE.

Outputs
Output Data Type Range Unit Description

CV DINT Current value of the counter.

QD BOOL TRUE when counter is empty (i.e., when CV = 0).

QU BOOL TRUE when counter is full (i.e., when CV = PV).

3.9.3.1 Remarks

l The counter is empty (CV = 0) when the application starts.
l The counter does not include a pulse detection for CU and CD inputs.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 189

KAS - PLC Library | 3 PLC Standard Libraries

l Use the "f_trig" (➜ p. 113) or "r_trig" (➜ p. 118) function blocks for counting pulses of CU or CD input
signals.

l CTDr, CTUr, and CTUDr function blocks operate exactly as other counters.
l Exception: All Boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included.

FBD Language Example

FFLD Language Example
l In the FFLD Language, CU is the input rung.

l The output rung is the QU output.

IL Language Example

(* MyCounter is a declared instance of CTUD function block. *)
Op1: CAL MyCounter (CU, CD, RESET, LOAD, PV)
FFLD MyCounter.QU
ST QU
FFLD MyCounter.QD
ST QD
FFLD MyCounter.CV
ST CV

ST Language Example

(* MyCounter is a declared instance of CTUD function block. *)
MyCounter (CU, CD, RESET, LOAD, PV);
QU := MyCounter.QU;
QD := MyCounter.QD;
CV := MyCounter.CV;

See Also

"CTU / CTUr" (➜ p. 187)

3.10 Mathematic Operations

190 Kollmorgen® | kdn.kollmorgen.com | December 2024

These are the mathematic calculation functions:

Name Description

abs / absL Returns the absolute value of the input.

EXP / EXPL Calculates the natural exponential of the input.

expt Calculates a power.

LN / LNL Calculates the natural logarithm of the input.

log / logL Calculates the logarithm (base 10) of the input.

pow / powL Calculates a power.

root Calculates the Nth root of the input.

ScaleLin Scaling - linear conversion.

sqrt / sqrtL Calculates the square root of the input.

trunc / truncL Truncates the decimal part of the input.

3.10.1 abs / absL

Function - Returns the absolute value of the input.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Any value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Absolute value of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 191

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
ABS
ST Q (* Q is: ABS (IN) *)

ST Language Example

Q := ABS (IN);

See Also

l log / logL
l pow / powL
l sqrt / sqrtL
l trunc / truncL

3.10.2 expt

Function - Calculates a power.

Inputs
Input Data Type Range Unit Default Description

IN REAL Real value.

EXP DINT Exponent.

Outputs
Output Data Type Range Unit Description

Q REAL Result: IN at the EXP power.

Remarks
The exponent (second input of the function) must be the operand of the function.

FBD Language Example

192 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
EXPT EXP
ST Q (* Q is: (IN ** EXP) *)

ST Language Example

Q := EXPT (IN, EXP);

See Also

l abs / absL
l log / logL
l pow / powL
l sqrt / sqrtL
l trunc / truncL

3.10.3 EXP / EXPL

Function - Calculates the natural exponential of the input.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 193

KAS - PLC Library | 3 PLC Standard Libraries

Output Data Type Range Unit Description

Q REAL / LREAL Result: Natural exponential of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
EXP
ST Q (* Q is: EXP (IN) *)

ST Language Example

Q := EXP (IN);

3.10.4 log / logL

Function - Calculates the logarithm (base 10) of the input.

Inputs

194 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Logarithm (base 10) of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
LOG
ST Q (* Q is: LOG (IN) *)

ST Language Example

Q := LOG (IN);

See Also

l abs / absL
l pow / powL
l sqrt / sqrtL
l trunc / truncL

3.10.5 LN / LNL

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 195

KAS - PLC Library | 3 PLC Standard Libraries

Function - Calculates the natural logarithm of the input.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Natural logarithm of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
LN
ST Q (* Q is: LN (IN) *)

ST Language Example

Q := LN (IN);

3.10.6 pow / powL

196 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function - Calculates a power.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

EXP REAL / LREAL Exponent.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: IN at the EXP power.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

l The exponent (second input of the function) must be the operand of the function.

Op1: LD IN
POW EXP
ST Q (* Q is: (IN ** EXP) *)

ST Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 197

KAS - PLC Library | 3 PLC Standard Libraries

l In the ST Language, the ** operator can be used.

Q := POW (IN, EXP);
Q := IN ** EXP;

See Also

l abs / absL
l expt
l log / logL
l sqrt / sqrtL
l trunc / truncL

3.10.7 root

Function - Calculates the Nth root of the input.

Inputs
Input Data Type Range Unit Default Description

IN REAL Real value.

N DINT Root level.

Outputs
Output Data Type Range Unit Description

Q REAL Result: Nth root of IN.

Remarks
None

3.10.7.1 FBD Language

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

198 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
ROOT N
ST Q (* Q is: ROOT (IN) *)

ST Language Example

Q := ROOT (IN, N);

3.10.8 ScaleLin

Function - Scaling - linear conversion.

Inputs
Input Data Type Range Unit Default Description

IN REAL Real value.

IMIN REAL Minimum input value.

IMAX REAL Minimum input value.

OMIN REAL Minimum output value.

OMAX REAL Minimum output value.

Outputs
Output Data Type Range Unit Description

Q REAL Result: OMIN + IN * (OMAX - OMIN) / (IMAX - IMIN).

Remarks

Truth Table

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 199

KAS - PLC Library | 3 PLC Standard Libraries

Inputs OUT

IMIN >=
IMAX

= IN

IN < IMIN = OMIN

IN > IMAX = OMAX

other = OMIN + IN * (OMAX - OMIN) / (IMAX
- IMIN)

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
ScaleLin IMAX, IMIN, OMAX, OMIN
ST OUT

ST Language Example

OUT := ScaleLin (IN, IMIN, IMAX, OMIN, OMAX);

3.10.9 sqrt / sqrtL

Function- Calculates the square root of the input.

200 Kollmorgen® | kdn.kollmorgen.com | December 2024

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Square root of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
 SQRT
 ST Q (* Q is: SQRT (IN) *)

ST Language Example

Q := SQRT (IN);

See Also

l "abs / absL" (➜ p. 191)
l "log / logL" (➜ p. 194)

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 201

KAS - PLC Library | 3 PLC Standard Libraries

l "pow / powL" (➜ p. 196)
l "trunc / truncL" (➜ p. 202)

3.10.10 trunc / truncL

Function - Truncates the decimal part of the input.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Integer part of N.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
TRUNC
ST Q (* Q is the integer part of IN *)

ST Language Example

202 Kollmorgen® | kdn.kollmorgen.com | December 2024

Q := TRUNC (IN);

See Also

l "abs / absL" (➜ p. 191)
l "log / logL" (➜ p. 194)
l "pow / powL" (➜ p. 196)
l "sqrt / sqrtL" (➜ p. 200)

3.11 Miscellaneous Functions

These are the miscellaneous functions:

Name Description

EnableEvents Enable or disable the production of events for binding (runtime to runtime variable
exchange).

GetSysInfo Get system information.

3.11.1 EnableEvents

Function - Enable or disable the production of events for binding (runtime to runtime variable exchange).

Inputs
Input Data Type Range Unit Default Description

EN BOOL FALSE, TRUE l TRUE to enable events.
l FALSE to disable events.

Outputs
Output Data Type Range Unit Description

ENO BOOL FALSE, TRUE Echo of EN input.

Remarks
l Production is enabled when the application starts.
l The first production is operated after the first cycle.
l To disable events since the beginning, you must call EnableEvents (FALSE) in the very first cycle.

FBD Language Example

FFLD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 203

KAS - PLC Library | 3 PLC Standard Libraries

l The input rung (EN) enables the event production.
l The output rung keeps the state of the input rung.
l Events are enables if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD EN
EnableEvents
ST ENO

ST Language Example

ENO := EnableEvents (EN);

See Also

Alarm_A

3.11.2 GetSysInfo

Function - Get system information.

Inputs
Input Data Type Range Unit Default Description

INFO DINT Identifier of the requested information.

Outputs
Output Data Type Range Unit Description

Q DINT Value of the requested information or 0 (zero) if error.

Remarks
The INFO parameter can be one of these predefined values:

Value Definition

_SYSINFO_APPSTAMP Compiling date stamp of the application.

_SYSINFO_BIGENDIAN Non zero if the runtime processor is big endian.

204 Kollmorgen® | kdn.kollmorgen.com | December 2024

Value Definition

_SYSINFO_CHANGE_CYCLE Indicates a cycle just after an Online Change

_SYSINFO_CODECRC CRC of the application code.

_SYSINFO_CYCLECOUNT Counter of cycles.

_SYSINFO_CYCLEMAX_MICROS Maximum detected cycle time in micro-seconds.

_SYSINFO_CYCLEMAX_MS Maximum detected cycle time in milliseconds.

_SYSINFO_CYCLEOVERFLOWS Number of detected cycle time overflows.

_SYSINFO_CYCLESTAMP_MS Timestamp of the current cycle in milliseconds (OEM dependent).

_SYSINFO_CYCLETIME_MICROS Duration of the previous cycle in micro-seconds.

_SYSINFO_CYCLETIME_MS Duration of the previous cycle in milliseconds.

_SYSINFO_DATACRC CRC of the application symbols.

_SYSINFO_DBSIZE Space used in RAM (bytes).

_SYSINFO_DEMOAPP Non zero if the application was compiled in DEMOmode.

_SYSINFO_ELAPSED Seconds elapsed since startup.

_SYSINFO_FREEHEAP Available space in memory heap (bytes).

_SYSINFO_NBBREAKPOINTS Number of installed breakpoints.

_SYSINFO_NBLOCKED Number of locked variables.

_SYSINFO_TRIGGER_MICROS Programmed cycle time in micro-seconds.

_SYSINFO_TRIGGER_MS Programmed cycle time in milliseconds.

_SYSINFO_WARMSTART Non zero if RETAIN variables were loaded at the last start.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 205

KAS - PLC Library | 3 PLC Standard Libraries

Op1: LD INFO
GETSYSINFO
ST Q

ST Language Example

Q := GETSYSINFO (INFO);

3.12 Registers

l "All Register Functions (Alphabetically)" (➜ p. 206)
l "Advanced Function" (➜ p. 206)
l "Bit Access" (➜ p. 207)
l "Bit-to-Bit Functions" (➜ p. 207)
l "Pack / Unpack Functions" (➜ p. 207)
l "Standard Functions" (➜ p. 207)

3.12.1 All Register Functions (Alphabetically)

Name Description

and_mask Performs a bit-to-bit Boolean AND between two integer values.

HiByte Get the highest byte of a word.

HiWord Get the highest word of a double word.

LoByte Get the lowest byte of a word.

LoWord Get the lowest word of a double word.

MakeDWord Builds a double word as the concatenation of two words.

MakeWord Builds a word as the concatenation of two bytes.

MBshift Multi-byte shift / rotate.

not_mask Performs a bit-to-bit Boolean negation of an integer value.

or_mask Performs a bit-to-bit Boolean OR between two integer values.

PACK8 Pack bits in a byte.

rol Rotate bits of a register to the left.

ror Rotate bits of a register to the right.

SetBit Set a bit in an integer register.

shl Shift bits of a register to the left.

shr Shift bits of a register to the right.

TestBit Test a bit of an integer register.

UNPACK8 Extract bits from a byte.

xor_mask Performs a bit to bit exclusive OR between two integer values.

3.12.1.1 Advanced Function

206 Kollmorgen® | kdn.kollmorgen.com | December 2024

This is the advanced function for register manipulation:

Name Description

MBshift Multi-byte shift / rotate.

3.12.1.2 Bit Access
These functions provide bit access from 8-bit to 32-bit integers:

Name Description

SetBit Set a bit in an integer register.

TestBit Test a bit of an integer register.

3.12.1.3 Bit-to-Bit Functions
These functions enable bit-to-bit operations from 8-bit to 32-bit integers:

Name Description

and_mask Performs a bit-to-bit Boolean AND between two integer values.

not_mask Performs a bit-to-bit Boolean negation of an integer value.

or_mask Performs a bit-to-bit Boolean OR between two integer values.

xor_mask Performs a bit to bit exclusive OR between two integer values.

3.12.1.4 Pack / Unpack Functions
These functions enable pack / unpack from 8-bit to 32-bit integers:

Name Description

HiByte Get the highest byte of a word.

HiWord Get the highest word of a double word.

LoByte Get the lowest byte of a word.

LoWord Get the lowest word of a double word.

MakeDWord Builds a double word as the concatenation of two words.

MakeWord Builds a word as the concatenation of two bytes.

PACK8 Pack bits in a byte.

UNPACK8 Extract bits from a byte.

3.12.1.5 Standard Functions
These are the standard functions for managing 8- to 32-bit registers:

Name Description

rol Rotate bits of a register to the left.

ror Rotate bits of a register to the right.

shl Shift bits of a register to the left.

shr Shift bits of a register to the right.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 207

KAS - PLC Library | 3 PLC Standard Libraries

3.12.2 and_mask

Function - Performs a bit-to-bit Boolean AND between two integer values.

Inputs
Input Data Type Range Unit Default Description

IN ANY First input.

MSK ANY Second input. (AND mask)

Outputs
Output Data Type Range Unit Description

Q ANY ANDmask between IN and MSK inputs.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO is equal to EN.

IL Language Example
l In the IL Language, the first parameter (IN) must be loaded in the current result before calling the function.

l The other input is the operands of the function.

Op1: LD IN
AND_MASK MSK
ST Q

208 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example

Q := AND_MASK (IN, MSK);

See Also

l not_mask
l or_mask
l xor_mask

3.12.3 HiByte

Function - Get the highest byte of a word.

Inputs
Input Data Type Range Unit Default Description

IN UINT 16-bit register.

Outputs
Output Data Type Range Unit Description

Q USINT Highest significant byte.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 209

KAS - PLC Library | 3 PLC Standard Libraries

l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
HIBYTE
ST Q

ST Language Example

Q := HIBYTE (IN);

See Also

l HiWord
l LoByte
l LoWord
l MakeDWord
l MakeWord

3.12.4 LoByte

Function - Get the lowest byte of a word.

Inputs
Input Data Type Range Unit Default Description

IN UINT 16-bit register.

Outputs
Output Data Type Range Unit Description

Q USINT Lowest significant byte.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

210 Kollmorgen® | kdn.kollmorgen.com | December 2024

l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
LOBYTE
ST Q

ST Language Example

Q := LOBYTE (IN);

See Also

l HiByte
l HiWord
l LoWord
l MakeDWord
l MakeWord

3.12.5 HiWord

Function - Get the highest word of a double word.

Inputs
Input Data Type Range Unit Default Description

IN UDINT 32-bit register.

Outputs
Output Data Type Range Unit Description

Q UINT Highest significant word.

Remarks
None

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 211

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
HIWORD
ST Q

ST Language Example

Q := HIWORD (IN);

See Also

l HiByte
l LoByte
l LoWord
l MakeDWord
l MakeWord

3.12.6 LoWord

Function - Get the lowest word of a double word.

Inputs
Input Data Type Range Unit Default Description

IN UDINT 32-bit register.

Outputs

212 Kollmorgen® | kdn.kollmorgen.com | December 2024

Output Data Type Range Unit Description

Q UINT Lowest significant word.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
LOWORD
ST Q

ST Language Example

Q := LOWORD (IN);

See Also

l HiByte
l HiWord
l LoByte
l MakeDWord
l MakeWord

3.12.7 MakeDWord

Function - Builds a double word as the concatenation of two words.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 213

KAS - PLC Library | 3 PLC Standard Libraries

Inputs
Input Data Type Range Unit Default Description

HI USINT Highest significant word.

LO USINT Lowest significant word.

Outputs
Output Data Type Range Unit Description

Q UINT 32-bit register.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD HI
MAKEDWORD LO
ST Q

ST Language Example

Q := MAKEDWORD (HI, LO);

See Also

214 Kollmorgen® | kdn.kollmorgen.com | December 2024

l HiByte
l HiWord
l LoByte
l LoWord
l MakeWord

3.12.8 MakeWord

Function - Builds a word as the concatenation of two bytes.

Inputs
Input Data Type Range Unit Default Description

HI USINT Highest significant byte.

LO USINT Lowest significant byte.

Outputs
Output Data Type Range Unit Description

Q UINT 16-bit register.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 215

KAS - PLC Library | 3 PLC Standard Libraries

Op1: LD HI
MAKEWORD LO
ST Q

ST Language Example

Q := MAKEWORD (HI, LO);

See Also

l HiByte
l HiWord
l LoByte
l LoWord
l MakeDWord

3.12.9 MBShift

Function - Multi-byte shift / rotate.

Inputs
Input Data Type Range Unit Default Description

Buffer SINT /
USINT

Array of bytes.

Pos DINT Base position in the array.

NbByte DINT Number of bytes to be shifted or rotated.

NbShift DINT Number of shifts or rotations.

ToRight BOOL FALSE, TRUE l TRUE for right.
l FALSE for left.

Rotate BOOL FALSE, TRUE l TRUE for rotate.
l FALSE for shift.

InBit BOOL FALSE, TRUE Bit to be introduced in a shift.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE TRUE if successful.

Remarks
l Use the ToRight argument to specify a shift to the left (FALSE) or to the right (TRUE).
l Use the Rotate argument to specify either a shift (FALSE) or a rotation (TRUE).
l In case of a shift, the InBit argument specifies the value of the bit that replaces the last shifted bit.

216 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.
l The rung output is the result (Q).
l The function is called only if EN is TRUE.

IL Language Example
Not available.

ST Language Example

Q := MBShift (Buffer, Pos, NbByte, NbShift, ToRight,
Rotate, InBit);

3.12.10 not_mask

Function - Performs a bit-to-bit Boolean negation of an integer value.

Inputs
Input Data Type Range Unit Default Description

IN ANY Integer input.

Outputs
Output Data Type Range Unit Description

Q ANY Bit to bit negation of the input.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 217

KAS - PLC Library | 3 PLC Standard Libraries

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first parameter (IN) must be loaded in the current result before calling the function.

l The other input is the operands of the function.

Op1: LD IN
NOT_MASK
ST Q

ST Language Example

Q := NOT_MASK (IN);

See Also

l and_mask
l or_mask
l xor_mask

3.12.11 or_mask

Function - Performs a bit-to-bit Boolean OR between two integer values.

Inputs

218 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN ANY First input.

MSK ANY Second input. (OR mask)

Outputs
Output Data Type Range Unit Description

Q ANY ORmask between IN and MSK inputs.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first parameter (IN) must be loaded in the current result before calling the function.

l The other input is the operands of the function.

Op1: LD IN
OR_MASK MSK
ST Q

ST Language Example

Q := OR_MASK (IN, MSK);

See Also

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 219

KAS - PLC Library | 3 PLC Standard Libraries

l and_mask
l not_mask
l xor_mask

3.12.12 Pack8

Function - Pack bits in a byte.

Inputs
Input Data Type Range Unit Default Description

IN0 BOOL FALSE, TRUE Less significant bit.

IN7 BOOL FALSE, TRUE Highest significant bit.

Outputs
Output Data Type Range Unit Description

Q USINT Byte built with input bits.

Remarks
None

FBD Language Example

FFLD Language Example
l The input rung is the IN0 input.

l The output rung (ENO) keeps the same value as the input rung.
l ENO keeps the same value as EN.

220 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN0
PACK8 IN1, IN2, IN3, IN4, IN5, IN6, IN7
ST Q

ST Language Example

Q := PACK8 (IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7);

See Also

Unpack8

3.12.13 rol

Function - Rotate bits of a register to the left.

Inputs
Input Data Type Range Unit Default Description

IN ANY Register.

NBR DINT Number of rotations (each rotation is 1 bit).

Outputs
Output Data Type Range Unit Description

Q ANY Rotated register.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

Diagram

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 221

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The rotation is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
ROL NBR
ST Q

ST Language Example

Q := ROL (IN, NBR);

See Also

l "ror" (➜ p. 222)
l "shl" (➜ p. 226)
l "shr" (➜ p. 227)

3.12.14 ror

Function - Rotate bits of a register to the right.

Inputs

222 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN ANY Register.

NBR ANY Number of rotations (each rotation is 1 bit).

Outputs
Output Data Type Range Unit Description

Q ANY Rotated register.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The rotation is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
ROR NBR
ST Q

ST Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 223

KAS - PLC Library | 3 PLC Standard Libraries

Q := ROR (IN, NBR);

See Also

l "rol" (➜ p. 221)
l "shl" (➜ p. 226)
l "shr" (➜ p. 227)

224 Kollmorgen® | kdn.kollmorgen.com | December 2024

3.12.15 SetBit

Function - Set a bit in an integer register.

Inputs
Input Data Type Range Unit Default Description

IN ANY 8- to 64-bit integer register.

BIT DINT Bit number (0 = less significant bit).

VAL BOOL FALSE, TRUE Bit value to apply.

Outputs
Output Data Type Range Unit Description

Q ANY Modified register.

Remarks
l Types LINT, LREAL, REAL, STRING, and TIME are not supported for IN and Q.
l IN and Q must have the same type.
l In case of invalid arguments (e.g., bad bit number or invalid input type), the function returns the value of IN
without modification.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
Not available.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 225

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

Q := SETBIT (IN, BIT, VAL);

See Also

"TestBit" (➜ p. 230)

3.12.16 shl

Function - Shift bits of a register to the left.

Inputs
Input Data Type Range Unit Default Description

IN ANY Register.

NBS ANY Number of shifts (each shift is 1 bit).

Outputs
Output Data Type Range Unit Description

Q ANY Shifted register.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The shift is executed only if EN is TRUE.
l ENO has the same value as EN.

226 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
SHL NBS
ST Q

ST Language Example

Q := SHL (IN, NBS);

See Also

l "rol" (➜ p. 221)
l "ror" (➜ p. 222)
l "shr" (➜ p. 227)

3.12.17 shr

Function - Shift bits of a register to the right.

Inputs
Input Data Type Range Unit Default Description

IN ANY Register.

NBS ANY Number of shifts (each shift is 1 bit).

Outputs
Output Data Type Range Unit Description

Q ANY Shifted register.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

Diagram

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 227

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The shift is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

l The second input is the operand of the function.

Op1: LD IN
SHR NBS
ST Q

ST Language Example

Q := SHR (IN, NBS);

See Also

l "rol" (➜ p. 221)
l "ror" (➜ p. 222)
l "shl" (➜ p. 226)

3.12.18 SWAB

Function - Swap the bytes of an integer.

Inputs

228 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

IN ANY No range N/A No default Any signed or unsigned integer.

Outputs
Output Data Type Range Unit Description

Q ANY No range N/A Swapped value.

Remarks
Supported data types are:

l DINT
l DWORD
l INT
l LINT
l LWORD
l SINT

l UDINT
l UINT
l ULINT
l USINT
l WORD

l SINT and USINT inputs result in the same output value because they are only 1 byte wide.
l If the function is called for another data type, the output takes the value of the input.

3.12.18.0.1 Examples

Type IN Q

DWORD 16#1A2B3C4D 16#4D3C2B1A

WORD 16#1A2B 16#2B1A

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example

swappedValue := SWAB(value);

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 229

KAS - PLC Library | 3 PLC Standard Libraries

3.12.19 TestBit

Function - Test a bit of an integer register.

Inputs
Input Data Type Range Unit Default Description

IN ANY 8- to 64-bit integer register.

BIT DINT Bit number (0 = less significant bit).

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Bit value.

Remarks
l Types LINT, LREAL, REAL, STRING, and TIME are not supported for IN and Q.
l IN and Q must have the same type.
l In case of invalid arguments (e.g., bad bit number or invalid input type), the function returns FALSE.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung is the output of the function.
l The function is executed only if EN is TRUE.

IL Language Example
Not available.

ST Language Example

Q := TESTBIT (IN, BIT);

230 Kollmorgen® | kdn.kollmorgen.com | December 2024

See Also

"SetBit" (➜ p. 225)

3.12.20 Unpack8

Function Block - Extract bits from a byte.

Inputs
Input Data Type Range Unit Default Description

IN USINT 8-bit register.

Outputs
Output Data Type Range Unit Description

Q0 BOOL FALSE, TRUE Less significant bit.

Q7 BOOL FALSE, TRUE Highest significant bit.

Remarks
l The operation is executed only in the input rung (EN) is TRUE.

FBD Language Example

FFLD Language Example
l In the FFLD language, the output rung is the Q0 output.
l The operation is performed if EN = TRUE.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 231

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example

(* MyUnpack is a declared instance of the UNPACK8 function block *)
Op1: CAL MyUnpack (IN)
 FFLD MyUnpack.Q0
 ST Q0

(* ... *)
 FFLD MyUnpack.Q7
 ST Q7

ST Language Example

(* MyUnpack is a declared instance of the UNPACK8 function block *)
MyUnpack (IN);
Q0 := MyUnpack.Q0;
Q1 := MyUnpack.Q1;
Q2 := MyUnpack.Q2;
Q3 := MyUnpack.Q3;
Q4 := MyUnpack.Q4;
Q5 := MyUnpack.Q5;
Q6 := MyUnpack.Q6;
Q7 := MyUnpack.Q7;

See Also

"Pack8" (➜ p. 220)

3.12.21 xor_mask

Function - Performs a bit to bit exclusive OR between two integer values.

Inputs
Input Data Type Range Unit Default Description

IN ANY First input.

MSK ANY Second input. (XOR mask)

Outputs
Output Data Type Range Unit Description

Q ANY Exclusive OR mask between IN and MSK inputs.

Remarks
l Arguments can be signed or unsigned integers from 8- to 32-bits.

232 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung keeps the state of the input rung.
l The function is executed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

l The other input is the operands of the function.

Op1: LD IN
XOR_MASK MSK
ST Q

ST Language Example

Q := XOR_MASK (IN, MSK);

See Also

l "and_mask" (➜ p. 208)
l "not_mask" (➜ p. 217)
l "or_mask" (➜ p. 218)

3.13 Selectors
These are the standard functions that perform data selection:

Name Description

mux Select one of the eight integer inputs.

mux4 Select one of the four integer inputs.

mux8 Select one of the eight integer inputs.

mux64 Select one of the 64 integer inputs.

sel Select one of the two integer inputs.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 233

KAS - PLC Library | 3 PLC Standard Libraries

3.13.1 mux

Function - Select one of the eight integer inputs.

The mux function is for the ST Language only.

Inputs
Input Data Type Range Unit Default Description

K DINT 0 to 7 N/A No default Selection command.

IN0 ANY Depends on the Data Type. N/A No default First input.

IN1 ANY Depends on the Data Type. N/A No default Second input.

IN2 ANY Depends on the Data Type. N/A No default Third input.

IN3 ANY Depends on the Data Type. N/A No default Fourth input.

IN4 ANY Depends on the Data Type. N/A No default Fifth input.

IN5 ANY Depends on the Data Type. N/A No default Sixth input.

IN6 ANY Depends on the Data Type. N/A No default Seventh input.

IN7 ANY Depends on the Data Type. N/A No default Last input.

Outputs
Output Data Type Range Unit Description

Q ANY No range N/A IN0 or IN1 ... or IN7 depending on K.
See the Truth Table.

Remarks
None

3.13.1.0.1

Truth Table

K Q

0 IN0

1 IN1

2 IN2

3 IN3

4 IN4

5 IN5

6 IN6

7 IN7

Other 0

234 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example
Not available.

FFLD Language Example
Not available.

IL Language Example
Not available.

3.13.1.0.2

ST Language Example

Q := MUX (K, IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7);

See Also

l "mux4" (➜ p. 235)
l "mux8" (➜ p. 237)
l "mux64" (➜ p. 238)
l "sel" (➜ p. 240)

3.13.2 mux4

Function - Select one of the four integer inputs.

Inputs
Input Data Type Range Unit Default Description

K DINT 0 to 3 N/A No default Selection command.

IN0 ANY Depends on the Data Type. N/A No default First input.

IN1 ANY Depends on the Data Type. N/A No default Second input.

IN2 ANY Depends on the Data Type. N/A No default Third input.

IN3 ANY Depends on the Data Type. N/A No default Last input.

Outputs
Output Data Type Range Unit Description

Q ANY No range N/A IN0 or IN1 ... or IN3 depending on K.
See the Truth Table.

Remarks
None

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 235

KAS - PLC Library | 3 PLC Standard Libraries

3.13.2.0.1

Truth Table

K Q

0 IN0

1 IN1

2 IN2

3 IN3

Other 0

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the selection.

l The output rung keeps the state of the input rung.
l The selection is performed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
l In the IL Language, the first parameter (selector) must be loaded in the current result before calling the
function.

l Other inputs are operands of the function, separated by comas.

Op1: LD SELECT
MUX4 IN1, IN2, IN3, IN4
ST Q

ST Language Example

Q := MUX4 (K, IN0, IN1, IN2, IN3);

236 Kollmorgen® | kdn.kollmorgen.com | December 2024

See Also

l "mux" (➜ p. 234)
l "mux8" (➜ p. 237)
l "mux64" (➜ p. 238)
l "sel" (➜ p. 240)

3.13.3 mux8

Function - Select one of the eight integer inputs.

Inputs
Input Data Type Range Unit Default Description

K DINT 0 to 7 N/A No default Selection command.

IN0 ANY Depends on the Data Type. N/A No default First input.

IN1 ANY Depends on the Data Type. N/A No default Second input.

IN2 ANY Depends on the Data Type. N/A No default Third input.

IN3 ANY Depends on the Data Type. N/A No default Fourth input.

IN4 ANY Depends on the Data Type. N/A No default Fifth input.

IN5 ANY Depends on the Data Type. N/A No default Sixth input.

IN6 ANY Depends on the Data Type. N/A No default Seventh input.

IN7 ANY Depends on the Data Type. N/A No default Last input.

Outputs
Output Data Type Range Unit Description

Q ANY No range N/A IN0 or IN1 ... or IN7 depending on K.
See the Truth Table.

Remarks
None

3.13.3.0.1

Truth Table

K Q

0 IN0

1 IN1

2 IN2

3 IN3

4 IN4

5 IN5

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 237

KAS - PLC Library | 3 PLC Standard Libraries

K Q

6 IN6

7 IN7

Other 0

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the selection.

l The output rung keeps the state of the input rung.
l The selection is performed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
Not available.

ST Language Example

Q := MUX8 (K, IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7);

See Also

l "mux" (➜ p. 234)
l "mux4" (➜ p. 235)
l "mux64" (➜ p. 238)
l "sel" (➜ p. 240)

3.13.4 mux64

Function - Select one of the 64 integer inputs.

238 Kollmorgen® | kdn.kollmorgen.com | December 2024

Inputs
Input Data Type Range Unit Default Description

K DINT 0 to 63 N/A No default Selection command.

IN0 ANY Depends on the Data Type. N/A No default First input.

IN1 ANY Depends on the Data Type. N/A No default Second input.

IN2 ANY Depends on the Data Type. N/A No default Third input.

IN3 ANY Depends on the Data Type. N/A No default Fourth input.

IN4 ANY Depends on the Data Type. N/A No default Fifth input.

IN5 ANY Depends on the Data Type. N/A No default Sixth input.

IN6 ANY Depends on the Data Type. N/A No default Seventh input.

IN7 ANY Depends on the Data Type. N/A No default Eighth input.

IN... ANY Depends on the Data Type. N/A No default ...

IN63 ANY Depends on the Data Type. N/A No default Last input.

Outputs
Output Data Type Range Unit Description

Q ANY Depends on the Data Type. N/A IN0 or IN1 ... or IN63 depending on K.
See the Truth Table.

Remarks
None

3.13.4.0.1

Truth Table

K Q

0 IN0

1 IN1

2 IN2

3 IN3

4 IN4

5 IN5

6 IN6

7 IN7

... ...

63 IN63

Other 0

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 239

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the selection.

l The output rung keeps the state of the input rung.
l The selection is performed only if EN is TRUE.
l ENO has the same value as EN.

IL Language Example
Not available.

ST Language Example

Q := MUX64 (K, IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7, ..., IN63);

See Also

l "mux" (➜ p. 234)
l "mux4" (➜ p. 235)
l "mux8" (➜ p. 237)
l "sel" (➜ p. 240)

3.13.5 sel

Function - Select one of the two integer inputs.

Inputs
Input Data Type Range Unit Default Description

G BOOL FALSE, TRUE Selection command.

IN0 ANY First input.

IN1 ANY Second input.

240 Kollmorgen® | kdn.kollmorgen.com | December 2024

Outputs
Output Data Type Range Unit Description

Q ANY l IN0 if G is FALSE
l IN1 if G is TRUE

Remarks
None

Truth Table

G Q

0 IN0

1 IN1

FBD Language Example

FFLD Language Example
l In the FFLD Language, the selector command is the input rung.

l The output rung keeps the state of the input rung.
l ENO has the same value as SELECT.

IL Language Example
l In the IL Language, the first parameter (selector) must be loaded in the current result before calling the
function.

l Other inputs are operands of the function, separated by comas.

Op1: LD SELECT
SEL IN1, IN2
ST Q

ST Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 241

KAS - PLC Library | 3 PLC Standard Libraries

Q := SEL (G, IN0, IN1);

See Also

l "mux" (➜ p. 234)
l "mux4" (➜ p. 235)
l "mux8" (➜ p. 237)
l "mux64" (➜ p. 238)

3.14 Standard Functions

These are the standard functions:

Name Description

CountOf Returns the number of items in an array.

DEC Decrease a numerical variable.

INC Increase a numerical variable.

MoveBlock Move / Copy items of an array.

NEG - Performs a negation of the input. (unary operator)

NOT Performs a Boolean negation of the input.

3.14.1 CountOf

Function - Returns the number of items in an array.

Inputs
Input Data Type Range Unit Default Description

ARR Any Declared array.

Outputs
Output Data Type Range Unit Description

Q DINT Total number of items in the array.

Remarks
l The input must be an array and can have any data type.
l This function is particularly useful to avoid writing directly the actual size of an array in a program.

l This keeps the program independent from the declaration.

Example

242 Kollmorgen® | kdn.kollmorgen.com | December 2024

FOR i := 1 TO CountOf (MyArray) DO
MyArray[i-1] := 0;

END_FOR;

Examples

Array Return

Arr1 [0..9] 10

Arr2 [0..4 , 0..9] 50

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.

IL Language Example
Not available.

ST Language Example

Q := CountOf (ARR);

3.14.2 DEC

Function - Decrease a numerical variable.

Inputs
Input Data Type Range Unit Default Description

IN ANY Numerical variable (increased after call).

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 243

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Q ANY Decreased value.

Remarks
l When the function is called, the variable connected to the IN input is decreased and copied to Q.

l All data types are supported except BOOL and STRING.
l For these types, the output is the copy of IN.

l For real values, a variable is decreased by 1.0.
l For time values, a variable is decreased by 1ms.
l The IN input must be directly connected to a variable.

l It cannot be a constant or complex expression.

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example
l This function is particularly designed for the ST Language.

l It allows simplified writing.
l Assigning the result of the function is not mandatory.

IN := 2;
Q := DEC (IN);
(* now: IN = 1 ; Q = 1 *)
DEC (IN); (* simplified call *)

3.14.3 INC

Function - Increase a numerical variable.

244 Kollmorgen® | kdn.kollmorgen.com | December 2024

Inputs
Input Data Type Range Unit Default Description

IN ANY Numerical variable (increased after call).

Outputs
Output Data Type Range Unit Description

Q ANY Increased value.

Remarks
l When the function is called, the variable connected to the IN input is decreased and copied to Q.

l All data types are supported except BOOL and STRING.
l For these types, the output is the copy of IN.

l For real values, a variable is decreased by 1.0.
l For time values, a variable is decreased by 1ms.
l The IN input must be directly connected to a variable.

l It cannot be a constant or complex expression.

FBD Language Example

FFLD Language Example

IL Language Example
Not available.

ST Language Example
l This function is particularly designed for the ST Language.

l It allows simplified writing.
l Assigning the result of the function is not mandatory.

IN := 1;
Q := INC (IN);
(* now: IN = 2 ; Q = 2 *)

INC (IN); (* simplified call *)

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 245

KAS - PLC Library | 3 PLC Standard Libraries

3.14.4 MoveBlock

Function - Move / Copy items of an array.

Inputs
Input Data Type Range Unit Default Description

DST ANY (*) Array containing the destination of the copy.

NB DINT Number of items to be copied.

PosDST DINT Index of the destination in DST.

PosSRC DINT Index of the first character in SRC.

SRC ANY (*) Array containing the source of the copy.

(*) SRC and DST cannot be a STRING.

Outputs
Output Data Type Range Unit Description

OK BOOL FALSE, TRUE TRUE if successful.

Remarks
l Arrays of string are not supported by this function.
l The function copies a number (NB) of consecutive items starting at the PosSRC index in SRC array to
PosDST position in DST array.

l SRC and DST can be the same array.
l In this case, the function avoids lost items when source and destination areas overlap.

l This function verifies array bounds and is always safe.
l The function returns TRUE if successful.
l It returns FALSE if input positions and number do not fit the bounds of SRC and DST arrays.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

246 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
Not available.

ST Language Example

OK := MOVEBLOCK (SRC, DST, PosSRS, PosDST, NB);

3.14.5 NEG -

Operator - Performs a negation of the input. (unary operator)

Inputs
Input Data Type Range Unit Default Description

IN ANY Numeric value.

Outputs
Output Data Type Range Unit Description

Q ANY Negation of the input.

Remarks
l In FBD and FFLD language, the block NEG can be used.

Truth Table

IN Q

0 0

1 -1

-123 123

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 247

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The negation is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
Not available.

ST Language Example
l In the ST Language, - (hyphen) can be followed by a complex Boolean expression between parentheses.

l The output data type must be the same as the input data type.

Q := -IN;
Q := - (IN1 + IN2);

3.14.6 NOT

Operator - Performs a Boolean negation of the input.

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE Boolean value.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Boolean negation of the input.

Remarks
None

Truth Table

248 Kollmorgen® | kdn.kollmorgen.com | December 2024

IN Q

0 1

1 0

FBD Language Example
l In the FBD Language, the block "NOT" can be used.

l Alternatively, you can use a link terminated by a "o" negation.

Example: Explicit use of the NOT block:

Example: Use of a negated link: Q is IN1 AND NOT IN2:

FFLD Language Example
l In the FFLD Language, negated contacts and coils can be used.

Example: Negated contact: Q is: IN1 AND NOT IN2:

Example: Negated coil: Q is NOT (IN1 AND IN2):

IL Language Example
l In the IL Language, the N modifier can be used with instructions FFLD, AND, OR, XOR and ST.

l It represents a negation of the operand.

Op1: FFLDN IN1
OR IN2
ST Q (* Q is equal to: (NOT IN1) OR IN2 *)

Op2: FFLD IN1
AND IN2
STN Q (* Q is equal to: NOT (IN1 AND IN2) *)st

ST Language Example
l In the ST Language, NOT can be followed by a complex Boolean expression between parentheses.

Q := NOT IN;
Q := NOT (IN1 OR IN2);

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 249

KAS - PLC Library | 3 PLC Standard Libraries

See Also

l AND ANDN &
l OR / ORN
l XOR / XORN

3.15 String Operations

3.15.1 Character Strings
These operators and functions manage character strings:

Name Operator / Function

ArrayToString / ArrayToStringU Copies elements of a SINT array to a STRING.

ascii Get the ASCII code of a character within a string.

ATOH Converts a string to an integer using hexadecimal basis.

char Builds a single character string.

concat Concatenate of strings.

CRC16 Calculates a CRC16 on the characters of a string.

delete Delete characters in a string.

find Find the position of characters in a string.

HTOA Converts and integer to a string using hexadecimal basis.

insert Insert characters in a string.

left Extract characters of a string on the left.

mid Extract characters of a string at any position.

mlen Get the number of characters in a string.

replace Replace characters in a string.

right Extract characters of a string on the right.

StringToArray / StringToArrayU Copies the characters of a STRING to an array of SINT.

3.15.2 Manage String Tables
These functions manage string tables as resources:

Name Description

LoadString Loads a string from the active string table.

StringTable Selects the active string table resource.

3.15.3 ArrayToString / ArrayToStringU

Function - Copies elements of a SINT array to a STRING.

Inputs

250 Kollmorgen® | kdn.kollmorgen.com | December 2024

Input Data Type Range Unit Default Description

SRC SINT[] N/A No default Source array of SINT small integers.
USINT for ArrayToStringU.

DST STRING N/A No default Destination STRING.

COUNT DINT N/A No default Number of characters to be copied.

Outputs
Output Data Type Range Unit Description

Q DINT N/A Number of characters copied.

Remarks
l This function copies the COUNT first elements of the SRC array to the characters of the DST string.
l The function checks the maximum size of the destination string and adjusts the COUNT number if
necessary.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
Not available.

ST Language Example

Q := ArrayToString (SRC, DST, COUNT);

See Also

StringToArray / StringToArrayU

3.15.4 ascii

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 251

KAS - PLC Library | 3 PLC Standard Libraries

Function - Get the ASCII code of a character within a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Input string.

POS DINT Position of the character within the string.
The first valid character position is 1.

Outputs
Output Data Type Range Unit Description

CODE DINT Either:

l The ASCII code of the selected character.
l 0 (zero) if the position is invalid.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the first parameter (IN) must be loaded in the current result before calling the function.

l The other input is the operand of the function.

Op1: LD IN
AND_MASK MSK
ST CODE

ST Language Example

252 Kollmorgen® | kdn.kollmorgen.com | December 2024

CODE := ASCII (IN, POS);

See Also

char

3.15.5 AToH

Function - Converts a string to an integer using hexadecimal basis.

Inputs
Input Data Type Range Unit Default Description

IN STRING String representing an integer in hexadecimal format.

Outputs
Output Data Type Range Unit Description

Q DINT Integer represented by the string.

Remarks
l This function is case insensitive.
l The result is 0 (zero) for an empty string.
l The conversion stops before the first invalid character.

Truth Table

IN Q

'' 0

'12' 18

'a0' 160

'A0zzz' 160

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 253

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
ATOH
ST Q

ST Language Example

Q := ATOH (IN);

See Also

HToA

3.15.6 char

Function - Builds a single character string.

Inputs
Input Data Type Range Unit Default Description

CODE DINT ASCII code of the specified character.

Outputs
Output Data Type Range Unit Description

Q STRING STRING containing only the specified character.

Remarks
None

FBD Language Example

254 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the input parameter (CODE) must be loaded in the current result before calling the
function.

Op1: LD CODE
CHAR
ST Q

ST Language Example

Q := CHAR (CODE);

See Also

ascii

3.15.7 concat

Function - Concatenate of strings.

Inputs
Input Data Type Range Unit Default Description

IN_1 STRING Any string variable or constant expression.

IN_N STRING Any string variable or constant expression.

Outputs
Output Data Type Range Unit Description

Q STRING Concatenation of all inputs.

Remarks
l In the FBD Language or FFLD Language, the block can have up to 16 inputs.
l In the IL Language or ST Language, the function accepts a variable number of inputs (at least 2).
l Use the + operator to concatenate strings.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 255

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example

IL Language Example

Op1: FFLD 'AB'
CONCAT 'CD', 'E'
ST Q (* Q is now 'ABCDE' *)

ST Language Example

Q := CONCAT ('AB', 'CD', 'E');
(* now Q is 'ABCDE' *)

3.15.8 CRC16

Function - Calculates a CRC16 on the characters of a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

Outputs
Output Data Type Range Unit Description

Q INT CRC16 calculated on all the characters of the string.

Remarks
l The function calculates a Modbus CRC16, initialized at 16#FFFF value.

256 Kollmorgen® | kdn.kollmorgen.com | December 2024

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung (EN) enables the operation.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
CRC16
ST Q

ST Language Example

Q := CRC16 (IN);

3.15.9 delete

Function - Delete characters in a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

NBC DINT Number of characters to be deleted.

POS DINT Position of the first deleted character.

Outputs
Output Data Type Range Unit Description

Q STRING Modified string.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 257

KAS - PLC Library | 3 PLC Standard Libraries

Remarks
l The first valid character position is 1.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the conversion is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l Other arguments are operands of the function, separated by comas.

Op1: LD IN
DELETE NBC, POS
ST Q

ST Language Example

Q := DELETE (IN, NBC, POS);

See Also

l Addition +
l find
l insert
l left
l mid
l mlen
l replace
l right

3.15.10 find

258 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function - Find the position of characters in a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

STR STRING Specific characters to search for within the STRING.

Outputs
Output Data Type Range Unit Description

POS DINT l Position of the first character of STR in IN.
l Returns 0 (zero) if not found.

Remarks
l The first valid character position is 1.
l The search is case sensitive.
l The return value can be used with other string functions (e.g., "mid" (➜ p. 265) or "right" (➜ p. 269)).

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l The second argument is the operand of the function.

Op1: LD IN
FIND STR
ST POS

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 259

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

POS := FIND (IN, STR);

See Also

l Addition +
l delete
l insert
l left
l mid
l mlen
l replace
l right

3.15.11 HToA

Function - Converts and integer to a string using hexadecimal basis.

Inputs
Input Data Type Range Unit Default Description

IN DINT Integer value.

Outputs
Output Data Type Range Unit Description

Q STRING String representing an integer in hexadecimal format.

Remarks
None

Truth Table

IN Q

0 '0'

18 '12'

160 'A0'

FBD Language Example

260 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
HTOA
ST Q

ST Language Example

Q := HTOA (IN);

See Also

AToH

3.15.12 insert

Function - Insert characters in a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

STR STRING String containing characters to be inserted.

POS DINT Position of the first inserted character.

Outputs
Output Data Type Range Unit Description

Q STRING Modified string.

Remarks
The first valid character position is 1.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 261

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l Other arguments are operands of the function, separated by comas.

Op1: LD IN
INSERT STR, POS
ST Q

ST Language Example

Q := INSERT (IN, STR, POS);

See Also

l Addition +
l delete
l find
l left
l mid
l mlen
l replace
l right

3.15.13 left

Function - Extract characters of a string on the left.

262 Kollmorgen® | kdn.kollmorgen.com | December 2024

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

NBC DINT Number of characters to extract.

Outputs
Output Data Type Range Unit Description

Q STRING String containing the first NBC characters of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l The second argument is the operand of the function.

Op1: LD IN
LEFT NBC
ST Q

ST Language Example

Q := LEFT (IN, NBC);

See Also

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 263

KAS - PLC Library | 3 PLC Standard Libraries

l Addition +
l delete
l find
l insert
l mid
l mlen
l replace
l right

3.15.14 LoadString

Function - Loads a string from the active string table.

Inputs
Input Data Type Range Unit Default Description

ID DINT ID of the string as declared in the string table.

Outputs
Output Data Type Range Unit Description

Q STRING Loaded string or empty string in case of error.

Remarks
l This function loads a string from the active string table and stores it in a STRING variable.

l The "StringTable" (➜ p. 270) function is used for selecting the active string table.
l The ID input (the string item identifier) is an identifier declared within the string table resource.

l You don't need to define this identifier again - the system does it for you.

FBD Language Example

FFLD Language Example

IL Language Example

Op1: LD ID
LoadString
ST Q

264 Kollmorgen® | kdn.kollmorgen.com | December 2024

ST Language Example

Q := LoadString (ID);

See Also

StringTable

3.15.15 mid

Function - Extract characters of a string at any position.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

NBC DINT Number of characters to extract.

POS DINT Position of the first character to extract.

Outputs
Output Data Type Range Unit Description

Q STRING String containing the first NBC characters of IN.

Remarks
l The first valid character position is 1.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 265

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l Other arguments are operands of the function, separated by comas.

Op1: LD IN
MID NBC, POS
ST Q

ST Language Example

Q := MID (IN, NBC, POS);

See Also

l Addition +
l delete
l find
l insert
l left
l mlen
l replace
l right

3.15.16 mlen

Function - Get the number of characters in a string.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

Outputs
Output Data Type Range Unit Description

NBC DINT Number of characters currently in the string.
0 (zero) if the string is empty.

Remarks
None

FBD Language Example

266 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
MLEN
ST NBC

ST Language Example

NBC := MLEN (IN);

See Also

l Addition +
l delete
l find
l insert
l left
l mid
l replace
l right

3.15.17 replace

Function - Replace characters in a string.

Inputs
Input Data

Type Range Unit Default Description

IN STRING Character string.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 267

KAS - PLC Library | 3 PLC Standard Libraries

Input Data
Type Range Unit Default Description

STR STRING String containing the characters to be inserted in place of the
NDEL removed characters.

NDEL DINT Number of characters to be deleted before insertion of STR.

POS DINT Position where characters are replaced.

Outputs
Output Data Type Range Unit Description

Q STRING Modified string.

Remarks
l The first valid character position is 1.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l Other arguments are operands of the function, separated by comas.

Op1: LD IN
REPLACE STR, NDEL, POS
ST Q

ST Language Example

268 Kollmorgen® | kdn.kollmorgen.com | December 2024

Q := REPLACE (IN, STR, NDEL, POS);

See Also

l "Addition +" (➜ p. 82)
l "delete" (➜ p. 257)
l "find" (➜ p. 258)
l "insert" (➜ p. 261)
l "left" (➜ p. 262)
l "mid" (➜ p. 265)
l "mlen" (➜ p. 266)
l "right" (➜ p. 269)

3.15.18 right

Function - Extract characters of a string on the right.

Inputs
Input Data Type Range Unit Default Description

IN STRING Character string.

NBC DINT Number of characters to extract.

Outputs
Output Data Type Range Unit Description

Q STRING String containing the first NBC characters of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 269

KAS - PLC Library | 3 PLC Standard Libraries

IL Language Example
l In the IL Language, the first input (the string) must be loaded in the current result before calling the
function.

l The second argument is the operand of the function.

Op1: LD IN
RIGHT NBC
ST Q

ST Language Example

Q := RIGHT (IN, NBC);

See Also

l "delete" (➜ p. 257)
l "find" (➜ p. 258)
l "insert" (➜ p. 261)
l "left" (➜ p. 262)
l "mid" (➜ p. 265)
l "mlen" (➜ p. 266)
l "replace" (➜ p. 267)

3.15.19 StringTable

Function - Selects the active string table resource.

Inputs
Input Data Type Range Unit Default Description

TABLE STRING Name of the Sting Table resource.
Must be a constant.

COL STRING Name of the column in the table.
Must be a constant.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE TRUE if OK.

Remarks
l This function selects a column of a valid String Table resource to become the active string table.

l The "LoadString" (➜ p. 264) function always refers to the active string table.

270 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Arguments must:
l be constant string expressions.
l fit to a declared string table and a valid column name within this table.

l If there is only one string table with only one column defined in the project, you do not need to call this
function.

l It is the default string table.

FBD Language Example

FFLD Language Example

IL Language Example

Op1: LD
 'MyTable'
 StringTable 'First Column'
 ST
OK

ST Language Example

OK := StringTable ('MyTable', 'FirstColumn");

See Also

l "LoadString" (➜ p. 264)
l "String Table Resources" (➜ p. 271)

3.15.19.1 String Table Resources
String tables are resources (embedded configuration data) edited with Workbench.

l A string table is a list of items identified by a name and referring to one or more character strings.
l String tables are typically used for defining static texts to be used in the application.
l These functions can be used for getting access to string tables in the programs:

l "StringTable" (➜ p. 270): selects the active string table.
l "LoadString" (➜ p. 264): Load a string from the active table.

l Each string table may contain several columns of texts for each item, and thus ease the localization of
application, simply by defining a column for each language.

l This way, the language can be selected dynamically at runtime by specifying the active language
(as a column) in the StringTable() function.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 271

KAS - PLC Library | 3 PLC Standard Libraries

The name entered in the string table as an ID is automatically declared for the compiler.

l The name:
l Can directly be passed to the LoadString() function without re-declaring it.
l Must conform to IEC standard naming rules.

You could do the same by declaring an array of STRING variables and enter some initial values for all items in
the array.

l String tables provide significant advantages compared to arrays:
l The editor provides a comfortable view of multiple columns at editing.
l String tables are loaded in the application code and does not require any further RAMmemory
unlike declared arrays.

l The string table editor automatically declares readable IDs for any string item to be used in
programs instead of working with hard-coded index values.

If the text is too long for the STRING variable when used at runtime, it is truncated.
Use special $ sequences in strings to specify non printable characters, according to the IEC standard:
Code Meaning

$' A Single quote.

$$ A "$" character.

$L A line feed character (ASCII code 10).

$N Carriage return plus line feed characters (ASCII codes 13 and 10).

$P A page break character (ASCII code 12).

$R A carriage return character (ASCII code 13).

$T A tab stop (ASCII code 9).

$xx Any character (xx is the ASCII code expressed on two hexadecimal digits.

3.15.20 StringToArray / StringToArrayU

Function - Copies the characters of a STRING to an array of SINT.

Inputs
Input Data Type Range Unit Default Description

SRC STRING N/A No default Source STRING.

DST SINT N/A No default Destination array of SINT small integers.
USINT for StringToArrayU.

Outputs
Output Data Type Range Unit Description

Q DINT N/A Number of characters copied.

Remarks
This function:

272 Kollmorgen® | kdn.kollmorgen.com | December 2024

l Copies the characters of the SRC string to the first characters of the DST array.
l Checks the maximum size destination arrays and reduces the number of copied characters if necessary.

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD
SRC
StringToArray DST
ST Q

ST Language Example

Q := StringToArray (SRC, DST);

See Also

"ArrayToString / ArrayToStringU" (➜ p. 250)

3.16 Timers
These are the functions for managing timers.

Name Description

blink Blinker.

BlinkA Asymmetric blinker.

PLS Pulse signal generator.

sig_gen Generator of pseudo-analogical Signal.

TMD Down-counting stop watch.

TMU / TMUsec Up-counting stop watch (seconds).

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 273

KAS - PLC Library | 3 PLC Standard Libraries

Name Description

TOF / TOFR Off timer.

TON On timer.

TP / TPR Pulse timer.

3.16.1 blink

Function Block - Blinker.

Inputs
Input Data Type Range Unit Default Description

RUN BOOL FALSE, TRUE Enabling command.

CYCLE TIME Blinking period.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Output blinking signal.

Remarks
l The output signal is FALSE when the RUN input is FALSE.
l The CYCLE input is the complete period of the blinking signal.

Time Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is the Q output.

274 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example

(* MyBlinker is a declared instance of BLINK function block *)
Op1: CAL MyBlinker (RUN, CYCLE)

FFLD MyBlinker.Q
ST Q

ST Language Example

(* MyBlinker is a declared instance of BLINK function block *)
MyBlinker (RUN, CYCLE);
Q := MyBlinker.Q;

See Also

l TOF / TOFR
l TON
l TP / TPR

3.16.2 BlinkA

Function Block - Asymmetric blinker.

Inputs
Input Data Type Range Unit Default Description

RUN BOOL FALSE, TRUE Enabling command.

TM0 TIME Duration of FALSE state on output.

TM1 TIME Duration of TRUE state on output.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Output blinking signal.

Remarks
l The output signal is FALSE when the RUN input is FALSE.

Time Diagram

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 275

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is the Q output.

IL Language Example

(* MyBlinker is a declared instance of BLINKA function block *)
Op1: CAL MyBlinker (RUN, TM0, TM1)

FFLD MyBlinker.Q
ST Q

ST Language Example

(* MyBlinker is a declared instance of BLINKA function block. *)
MyBlinker (RUN, TM0, TM1);
Q := MyBlinker.Q;

See Also

l TOF / TOFR
l TON
l TP / TPR

3.16.3 PLS

276 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function Block - Pulse signal generator.

Inputs
Input Data Type Range Unit Default Description

RUN BOOL FALSE, TRUE Enabling command.

CYCLE TIME Signal period.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Output pulse signal.

Remarks
l On every period, the output is set to TRUE during one cycle only.

Time Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is the Q output.

IL Language Example

(* MyPLS is a declared instance of PLS function block. *)
Op1: CAL MyPLS (RUN, CYCLE)

FFLD MyPLS.Q
ST

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 277

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

(* MyPLS is a declared instance of PLS function block. *)
MyPLS (RUN, CYCLE);
Q := MyPLS.Q;

See Also

l TOF / TOFR
l TON
l TP / TPR

3.16.4 sig_gen

Function Block - Generator of pseudo-analogical Signal.

Inputs
Input Data Type Range Unit Default Description

Run BOOL FALSE, TRUE Enabling command.

Period TIME Signal period.

Maximum DINT Maximum growth during the signal period.

Outputs
Output Data Type Range Unit Description

Pulse Blinking at each period.

Up Growing according to max * period.

End Pulse after max * period.

Sine Sine curve.

Remarks

FBD Language Example
Not available.

278 Kollmorgen® | kdn.kollmorgen.com | December 2024

FFLD Language Example

IL Language Example
Not available.

ST Language Example
Not available.

3.16.5 TMD

Function Block - Down-counting stop watch.

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE The time counts when this input is TRUE.

RST BOOL FALSE, TRUE Timer is reset to 0 (zero) when this input is TRUE.

PT TIME Programmed time.

Outputs
Input Data Type Range Unit Description

Q BOOL FALSE, TRUE Timer elapsed output signal.

ET TIME Elapsed time.

Remarks
l The timer counts up when the IN input is TRUE.

l It stops when the programmed time is elapsed.
l The timer is reset when the RST input is TRUE.

l It is not reset when IN is false.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 279

KAS - PLC Library | 3 PLC Standard Libraries

Time Diagram

Figure 4-2: Time Diagram

FBD Language Example

FFLD Language Example

IL Language Example

(* MyTimer is a declared instance of TMD function block *)
Op1: CAL MyTimer (IN, RST, PT)
 FFLD: MyTimer.Q
 ST: Q
 FFLD: MyTimer.ET
 ST: ET

ST Language Example

(* MyTimer is a declared instance of TMD function block *)
MyTimer (IN, RST, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

280 Kollmorgen® | kdn.kollmorgen.com | December 2024

See Also

"TMU / TMUsec" (➜ p. 281)

3.16.6 TMU / TMUsec

Function Block - Up-counting stop watch (seconds).

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE The time counts when this input is TRUE.

RST BOOL FALSE, TRUE Timer is reset to 0 (zero) when this input is TRUE.

PT TIME Programmed time. (TMU)

PTsec UDINT Programmed time. (TMUsec - seconds)

Outputs
Input Data Type Range Unit Description

Q BOOL FALSE, TRUE Timer elapsed output signal.

ET TIME Elapsed time. (TMU)

ETsec UDINT Elapsed time. (TMU - seconds)

Remarks
TMUsec is identical to TMU except that the parameter is a number of seconds.

l The timer counts up when the IN input is TRUE.
l It stops when the programmed time is elapsed.

l The timer is reset when the RST input is TRUE.
l It is not reset when IN is false.

Time Diagram

Figure 4-3: Time Diagram

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 281

KAS - PLC Library | 3 PLC Standard Libraries

FBD Language Example

FFLD Language Example

IL Language Example

(* MyTimer is a declared instance of TMU function block *)
Op1: CAL MyTimer (IN, RST, PT)
 FFLD MyTimer.Q
 ST Q
 FFLD MyTimer.ET
 ST ET

ST Language Example

(* MyTimer is a declared instance of TMU function block *)
MyTimer (IN, RST, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

See Also

"TMD" (➜ p. 279)

3.16.7 TOF / TOFR

Function Block - Off timer.

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE Timer command.

PT TIME Programmed time.

RST BOOL FALSE, TRUE Reset (TOFR only).

282 Kollmorgen® | kdn.kollmorgen.com | December 2024

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Timer elapsed output signal.

ET TIME Elapsed time.

Remarks
l TOFR is same as TOF but has an extra input for resetting the timer.
l The timer starts on a falling pulse of IN input.

l It stops when the elapsed time is equal to the programmed time.
l A rising pulse of IN input resets the timer to 0 (zero).
l The output signal is set to TRUE when the IN input rises to TRUE.

l It is reset to FALSE when the programmed time is elapsed.

Time Diagram

Figure 4-4: Time Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is Q the output signal.

IL Language Example

(* MyTimer is a declared instance of TOF function block *)
Op1: CAL MyTimer (IN, PT)

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 283

KAS - PLC Library | 3 PLC Standard Libraries

ST Language Example

(* MyTimer is a declared instance of TOF function block *)
MyTimer (IN, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

See Also

l "blink" (➜ p. 274)
l "TON" (➜ p. 284)
l "TP / TPR" (➜ p. 285)

3.16.8 TON

Function Block - On timer.

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE Timer command.

PT TIME Programmed time.

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Timer elapsed output signal.

ET TIME Elapsed time.

Remarks
l The timer starts on a rising pulse of IN input.

l It stops when the elapsed time is equal to the programmed time.
l A falling pulse of IN input resets the timer to 0 (zero).
l The output signal is set to TRUE when programmed time is elapsed.

l It is reset to FALSE when the input command falls.

Time Diagram

284 Kollmorgen® | kdn.kollmorgen.com | December 2024

Figure 4-5: Time Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is Q the output signal.

IL Language Example

(* MyTimer is a declared instance of TON function block *)
Op1: CAL MyTimer (IN, PT)

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

ST Language Example

MyTimer is a declared instance of TON function block.
MyTimer (IN, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

See Also

l "blink" (➜ p. 274)
l "TOF / TOFR" (➜ p. 282)
l "TP / TPR" (➜ p. 285)

3.16.9 TP / TPR

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 285

KAS - PLC Library | 3 PLC Standard Libraries

Function Block - Pulse timer.

Inputs
Input Data Type Range Unit Default Description

IN BOOL FALSE, TRUE Timer command.

PT TIME Programmed time.

RST BOOL FALSE, TRUE Reset (TPR only).

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE Timer elapsed output signal.

ET TIME Elapsed time.

Remarks
l TPR is same as TP but has an extra input for resetting the timer.
l The timer starts on a rising pulse of IN input.

l It stops when the elapsed time is equal to the programmed time.
l A falling pulse of IN input resets the timer to 0 (zero) but only if the programmed time is elapsed.
l All pulses of IN while the timer is running are ignored.
l The output signal is set to TRUE while the timer is running.

Time Diagram

Figure 4-6: Time Diagram

FBD Language Example

FFLD Language Example
l In the FFLD Language, the input rung is the IN command.

l The output rung is Q the output signal.

286 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example

(* MyTimer is a declared instance of TP function block *)
Op1: CAL MyTimer (IN, PT)

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

ST Language Example

(* MyTimer is a declared instance of TP function block *)
MyTimer (IN, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

See Also

l "blink" (➜ p. 274)
l "TOF / TOFR" (➜ p. 282)
l "TON" (➜ p. 284)

3.17 Trigonometric Functions
These are the functions for trigonometric calculation:

Name Description

acos / acosL Calculate an arc-cosine.

asin / asinL Calculate an arc-sine.

atan / atanL Calculate an arc-tangent.

atan2 / atan2L Calculate arc-tangent of Y/X.

cos / cosL Calculate a cosine.

sin / sinL Calculate a sine.

tan / tanL Calculate a tangent.

UseDegrees Sets the unit for angles in all trigonometric functions.

3.17.1 acos / acosL

Function - Calculate an arc-cosine.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 287

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Default Description

Q REAL / LREAL Result: Arc-cosine of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
ACOS
ST Q (* Q is: ACOS (IN) *)

ST Language Example

Q := ACOS (IN);

See Also

l asin / asinL
l atan / atanL
l atan2 / atan2L
l cos / cosL
l sin / sinL
l tan / tanL

3.17.2 asin / asinL

288 Kollmorgen® | kdn.kollmorgen.com | December 2024

Function - Calculate an arc-sine.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Arc-sine of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
ASIN
ST Q (* Q is: ASIN (IN) *)

ST Language Example

Q := ASIN (IN);

See Also

l "acos / acosL" (➜ p. 287)
l "atan / atanL" (➜ p. 290)
l "atan2 / atan2L" (➜ p. 291)

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 289

KAS - PLC Library | 3 PLC Standard Libraries

l "cos / cosL" (➜ p. 292)
l "sin / sinL" (➜ p. 293)
l "tan / tanL" (➜ p. 294)

3.17.3 atan / atanL

Function - Calculate an arc-tangent.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Arc-tangent of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the first input must be loaded before the function call.

Op1: LD IN
ATAN
ST Q (* Q is: ATAN (IN) *)

ST Language Example

290 Kollmorgen® | kdn.kollmorgen.com | December 2024

Q := ATAN (IN);

See Also

l acos / acosL
l asin / asinL
l atan2 / atan2L
l cos / cosL
l sin / sinL
l tan / tanL

3.17.4 atan2 / atan2L

Function - Calculate arc-tangent of Y/X.

Inputs
Input Data Type Range Unit Default Description

X REAL / LREAL Real value.

Y REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Arc-tangent of X / Y.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.

IL Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 291

KAS - PLC Library | 3 PLC Standard Libraries

l In the IL Language, the first input must be loaded before the function call.

Op1: LD Y
ATAN2 X
ST Q (* Q is: ATAN2 (Y / X) *)

ST Language Example
Not available.

See Also

l acos / acosL
l asin / asinL
l 3.17.3 "atan / atanL"
l cos / cosL
l sin / sinL
l tan / tanL

3.17.5 cos / cosL

Function - Calculate a cosine.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Cosine of IN.

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.

292 Kollmorgen® | kdn.kollmorgen.com | December 2024

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
COS
ST Q (* Q is: COS (IN) *)

ST Language Example

Q := COS (IN);

See Also

l acos / acosL
l asin / asinL
l atan / atanL
l atan2 / atan2L
l sin / sinL
l tan / tanL

3.17.6 sin / sinL

Function - Calculate a sine.

Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Sine of IN.

Remarks
None

FBD Language Example

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 293

KAS - PLC Library | 3 PLC Standard Libraries

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
l In the IL Language, the input must be loaded in the current result before calling the function.

Op1: LD IN
SIN
ST Q (* Q is: SIN (IN) *)

ST Language Example

Q := SIN (IN);

See Also

l acos / acosL
l asin / asinL
l atan / atanL
l atan2 / atan2L
l cos / cosL
l tan / tanL

3.17.7 tan / tanL

Function - Calculate a tangent.

3.17.7.1 Inputs
Input Data Type Range Unit Default Description

IN REAL / LREAL Real value.

3.17.7.2 Outputs
Output Data Type Range Unit Description

Q REAL / LREAL Result: Tangent of IN.

294 Kollmorgen® | kdn.kollmorgen.com | December 2024

Remarks
None

FBD Language Example

FFLD Language Example
l In the FFLD Language, the operation is executed only if the input rung (EN) is TRUE.

l The output rung (ENO) keeps the same value as the input rung.
l The function is executed only if EN is TRUE.
l ENO keeps the same value as EN.

IL Language Example
Not available.

ST Language Example

Q := TAN (IN);

See Also

l acos / acosL
l asin / asinL
l atan / atanL
l atan2 / atan2L
l cos / cosL
l sin / sinL

3.17.8 UseDegrees

Function - Sets the unit for angles in all trigonometric functions.

Inputs
Input Data

Type Range Unit Default Description

IN BOOL FALSE, TRUE l If TRUE, turn all trigonometric functions to use
degrees.

l If FALSE, turn all trigonometric functions to use
radians (default).

KAS - PLC Library | 3 PLC Standard Libraries

Kollmorgen® | kdn.kollmorgen.com | December 2024 295

KAS - PLC Library | 3 PLC Standard Libraries

Outputs
Output Data Type Range Unit Description

Q BOOL FALSE, TRUE TRUE if functions use degrees before the call.

Remarks
This function sets the working unit for these functions:

Function Description

"acos / acosL" (➜ p. 287) Calculate an arc-cosine.

"asin / asinL" (➜ p. 288) Calculate an arc-sine.

"atan / atanL" (➜ p. 290) Calculate an arc-tangent.

"atan2 / atan2L" (➜ p. 291) Calculate arc-tangent of Y/X.

"cos / cosL" (➜ p. 292) Calculate a cosine.

"sin / sinL" (➜ p. 293) Calculate a sine.

"tan / tanL" (➜ p. 294) Calculate a tangent.

FBD Language Example

FFLD Language Example
l The first input is the rung.
l The rung is the output.

IL Language Example
Not available.

ST Language Example

Q := UseDegrees (IN);

296 Kollmorgen® | kdn.kollmorgen.com | December 2024

Support and Services

About Kollmorgen
When you need motion and automation systems for your most demanding applications and environments, count
on Kollmorgen - the innovation leader for more than 100 years. We deliver the industry’s highest-performing,
most reliable motors, drives, AGV control solutions and automation platforms, with over a million standard and
easily modifiable products to meet virtually any motion challenge. We offer manufacturing facilities, distributors
and engineering expertise in all major regions around the world, so you can bring a better machine to market
faster and keep it profitable for many years to come.

Kollmorgen Developer Network

See the Kollmorgen Support Network for product support.
Search the knowledge base for answers and get product downloads.

Kollmorgen Support Locations
North America
Kollmorgen
201West Rock Road
Radford, VA 24141, USA
Web: www.kollmorgen.com
Email: support@kollmorgen.com
Tel.: +1-540-633-3545
Fax: +1-540-639-4162

Europe
Kollmorgen Europe GmbH
Pempelfurtstr. 1
40880 Ratingen, Germany
Web: www.kollmorgen.com
Email: Technical.Support.EU@regalrexnord.com
Tel.: +49-2102-9394-0
Fax: +49-2102-9394-3155

South America
Altra Industrial Motion do Brasil
Equipamentos Industriais LTDA.
Avenida João Paulo Ablas, 2970
Jardim da Glória, Cotia – SP
CEP 06711-250, Brazil
Web: www.kollmorgen.com
Email: contato@kollmorgen.com
Tel.: (+55 11) 4615-6300

China and SEA
KOLLMORGEN
Room 302, Building 5, Libao Plaza,
88 Shenbin Road, Minhang District,
Shanghai, China.
Web: www.kollmorgen.cn
Email: sales.china@kollmorgen.com
Tel.: +86-400 668 2802

KAS - PLC Library | Support and Services

Kollmorgen® | kdn.kollmorgen.com | December 2024 297

https://www.kollmorgen.com/en-us/developer-network
http://kdn.kollmorgen.com/
http://www.kollmorgen.com/
mailto:support@kollmorgen.com
http://www.kollmorgen.com/
mailto:technik@kollmorgen.com
http://www.kollmorgen.com/
mailto:contato@kollmorgen.com
http://www.kollmorgen.cn/
mailto:sales.china@kollmorgen.com

	1 Programming Languages
	1.1 Sequential Function Chart (SFC)
	1.1.1 SFC Execution at Runtime
	1.1.1.1 Divergence
	1.1.1.1.1 Order of Action Block Execution

	1.1.2 Hierarchy of SFC Programs
	1.1.3 Control an SFC Child Program

	1.2 Function Block Diagram (FBD)
	1.2.1 Data Flow
	1.2.2 FFLD Symbols

	1.3 Instruction List (IL)
	1.3.1 Comments
	1.3.2 Data Flow
	1.3.3 Evaluation of Expressions
	1.3.4 Actions

	1.4 Structured Text (ST)
	1.4.1 Comments
	1.4.2 Expressions
	1.4.3 Statements
	1.4.3.1 Basic Statements
	1.4.3.2 Conditional Statements
	1.4.3.3 Loop Statements
	1.4.3.4 Other Statements

	1.5 Constant Expressions
	1.5.1 Examples
	1.5.1.1 Valid Constant Expressions
	1.5.1.2 Invalid Constant Expressions

	1.6 Variables
	1.6.1 Groups
	1.6.2 Data Type and Dimension
	1.6.3 Name a Variable
	1.6.4 Variable Attributes

	1.7 Free Form Ladder Diagram (FFLD)
	1.7.1 Use of EN Input and ENO Output for Blocks
	1.7.1.1 Examples

	1.7.2 FFLD Contacts and Coils
	1.7.2.1 FFLD Contacts
	1.7.2.1.1 Serialized and Parallel Contacts
	1.7.2.1.2 Transition Contacts

	1.7.2.2 FFLD Coils

	2 PLC Advanced Libraries
	2.1 All Functions - Alphabetical
	2.1.1 Alarm Management
	2.1.2 Analog Signal Processing
	2.1.3 Communication
	2.1.4 Data Collections and Serialization
	2.1.5 Data Log
	2.1.6 Special Operations

	2.2 AS-interface Functions
	2.2.1 Interface
	2.2.2 Arguments

	2.3 File Management
	2.3.1 Sequential Read / Write Function Blocks
	2.3.2 SD card Functions
	2.3.2.1 Related Function Blocks

	2.3.3 SD Card Access
	2.3.4 File Path Conventions
	2.3.4.1 File Name Warning and Limitations
	2.3.4.2 Shared Directory Path Conventions
	2.3.4.3 SD Card Path Conventions
	2.3.4.3.1 Valid Paths
	2.3.4.3.2 Invalid Paths

	2.3.4.4 USB Flash Drive Path Conventions
	2.3.4.4.1.1 Valid Paths
	2.3.4.4.2.2 Invalid Paths

	2.4 PLC Advanced - Advanced
	2.4.1 Alarm_A
	2.4.1.0.1 Sequence

	2.4.2 Alarm_M
	2.4.2.0.1 Sequence

	2.4.3 ApplyRecipeColumn
	2.4.4 average / averageL
	2.4.5 CurveLin
	2.4.6 derivate
	2.4.7 FIFO
	2.4.8 FilterOrder1
	2.4.8.0.1 Example

	2.4.9 hyster
	2.4.10 integral
	2.4.11 LIFO
	2.4.12 lim_alrm
	2.4.13 PWM
	2.4.14 RAMP
	2.4.15 rand
	2.4.16 SerializeIn
	2.4.17 SerializeOut
	2.4.18 SigID
	2.4.19 SigPlay
	2.4.20 SigScale
	2.4.21 stackint
	2.4.22 SurfLin
	2.4.23 VLID

	2.5 PLC Advanced - Files
	2.5.1 LogFileCSV
	2.5.2 SD Card Mounting Functions
	2.5.2.1 SD_ISREADY
	2.5.2.2 SD_MOUNT
	2.5.2.3 SD_UNMOUNT

	2.6 PID
	2.6.0.1 Diagram

	3 PLC Standard Libraries
	3.1 Programming Languages
	3.2 Programming Features
	3.3 Arithmetic Operations
	3.3.1 All Functions and Operators (Alphabetically)
	3.3.1.1 Standard Functions
	3.3.1.2 Standard Operators

	3.3.2 Addition +
	3.3.3 Divide /
	3.3.4 NEG -
	3.3.5 limit
	3.3.5.0.1 Function Diagram

	3.3.6 max
	3.3.7 min
	3.3.8 mod / modLR / modR
	3.3.9 Multiply
	3.3.10 odd
	3.3.11 SetWithin
	3.3.12 Subtraction -

	3.4 Basic Operations
	3.4.1 Data Manipulation
	3.4.2 Control Program Execution
	3.4.2.1 Language Features
	3.4.2.2 Structured Statements

	3.4.3 Assignment :=
	3.4.4 Bit Access
	3.4.5 Differences between Functions and Function Blocks
	3.4.6 Call a Sub-Program
	3.4.6.1 FBD and FFLD Languages

	3.4.7 CASE OF ELSE END_CASE
	3.4.7.1 Syntax

	3.4.8 EXIT
	3.4.9 FOR TO BY END_FOR
	3.4.9.1 Syntax

	3.4.10 IF THEN ELSE ELSIF END_IF
	3.4.10.1 Syntax

	3.4.11 ON
	3.4.11.1 Syntax

	3.4.12 Parenthesis ()
	3.4.13 REPEAT UNTIL END_REPEAT
	3.4.13.1 Syntax

	3.4.14 RETURN RET RETC RETNC RETCN
	3.4.15 WAIT / WAIT_TIME
	3.4.15.1 Syntax

	3.4.16 WHILE DO END_WHILE
	3.4.16.1 Syntax

	3.5 Boolean Operations
	3.5.1 All Functions (Alphabetically)
	3.5.1.1 Standard Operators
	3.5.1.2 Available Blocks

	3.5.2 FlipFlop
	3.5.3 f_trig
	3.5.4 QOR
	3.5.5 R
	3.5.6 RS
	3.5.7 r_trig
	3.5.8 S
	3.5.9 sema
	3.5.10 SR
	3.5.11 XOR / XORN

	3.6 Clock Management Functions (Real Time)
	3.6.1 All Functions (Alphabetically)
	3.6.1.1 Format the Present Date / Time
	3.6.1.2 Read the Real Time Clock
	3.6.1.3 Time Zone and Clock Synchronization
	3.6.1.4 Triggering Operations

	3.6.2 day_time
	3.6.3 DTAt
	3.6.3.1 Inputs
	3.6.3.2 Outputs

	3.6.4 DTCurDate
	3.6.5 DTCurDateTime
	3.6.6 DTCurTime
	3.6.7 DTDay
	3.6.8 DTGetNTPServer
	3.6.9 DTGetNTPSync
	3.6.10 DTGetTimeZone
	3.6.10.1 Inputs
	3.6.10.2 Outputs

	3.6.11 DTEvery
	3.6.12 DTFormat
	3.6.13 DTHour
	3.6.14 DTListTimeZones
	3.6.15 DTMake
	3.6.16 DTMin
	3.6.17 DTMonth
	3.6.18 DTMs
	3.6.19 DTSec
	3.6.20 DTSetDateTime
	3.6.21 DTSetNTPServer
	3.6.22 DTSetNTPSync
	3.6.23 DTSetTimeZone
	3.6.24 DTYear
	3.6.25 List of Date / Time / NTP ErrorID Codes

	3.7 Comparison Operations
	3.7.1 CMP
	3.7.2 GE >=
	3.7.3 GT >
	3.7.4 EQ =
	3.7.5 NE <>
	3.7.6 LE <=
	3.7.7 LT <

	3.8 Conversion Functions
	3.8.1 All Functions (Alphabetically)
	3.8.1.1 Convert Data to Another Data Type
	3.8.1.2 BCD Format Conversions

	3.8.2 any_to_bool
	3.8.3 any_to_dint / any_to_udint
	3.8.4 any_to_int / any_to_uint
	3.8.5 any_to_lint / any_to_ulint
	3.8.6 any_to_lreal
	3.8.7 any_to_real
	3.8.7.1 Outputs

	3.8.8 any_to_time
	3.8.9 any_to_sint / any_to_usint
	3.8.10 any_to_string
	3.8.11 num_to_string
	3.8.12 bcd_to_bin
	3.8.13 bin_to_bcd

	3.9 Counters
	3.9.1 CTD / CTDr
	3.9.2 CTU / CTUr
	3.9.3 CTUD / CTUDr
	3.9.3.1 Remarks

	3.10 Mathematic Operations
	3.10.1 abs / absL
	3.10.2 expt
	3.10.3 EXP / EXPL
	3.10.4 log / logL
	3.10.5 LN / LNL
	3.10.6 pow / powL
	3.10.7 root
	3.10.7.1 FBD Language

	3.10.8 ScaleLin
	3.10.9 sqrt / sqrtL
	3.10.10 trunc / truncL

	3.11 Miscellaneous Functions
	3.11.1 EnableEvents
	3.11.2 GetSysInfo

	3.12 Registers
	3.12.1 All Register Functions (Alphabetically)
	3.12.1.1 Advanced Function
	3.12.1.2 Bit Access
	3.12.1.3 Bit-to-Bit Functions
	3.12.1.4 Pack / Unpack Functions
	3.12.1.5 Standard Functions

	3.12.2 and_mask
	3.12.3 HiByte
	3.12.4 LoByte
	3.12.5 HiWord
	3.12.6 LoWord
	3.12.7 MakeDWord
	3.12.8 MakeWord
	3.12.9 MBShift
	3.12.10 not_mask
	3.12.11 or_mask
	3.12.12 Pack8
	3.12.13 rol
	3.12.14 ror
	3.12.15 SetBit
	3.12.16 shl
	3.12.17 shr
	3.12.18 SWAB
	3.12.18.0.1 Examples

	3.12.19 TestBit
	3.12.20 Unpack8
	3.12.21 xor_mask

	3.13 Selectors
	3.13.1 mux
	3.13.1.0.1
	3.13.1.0.2

	3.13.2 mux4
	3.13.2.0.1

	3.13.3 mux8
	3.13.3.0.1

	3.13.4 mux64
	3.13.4.0.1

	3.13.5 sel

	3.14 Standard Functions
	3.14.1 CountOf
	3.14.2 DEC
	3.14.3 INC
	3.14.4 MoveBlock
	3.14.5 NEG -
	3.14.6 NOT

	3.15 String Operations
	3.15.1 Character Strings
	3.15.2 Manage String Tables
	3.15.3 ArrayToString / ArrayToStringU
	3.15.4 ascii
	3.15.5 AToH
	3.15.6 char
	3.15.7 concat
	3.15.8 CRC16
	3.15.9 delete
	3.15.10 find
	3.15.11 HToA
	3.15.12 insert
	3.15.13 left
	3.15.14 LoadString
	3.15.15 mid
	3.15.16 mlen
	3.15.17 replace
	3.15.18 right
	3.15.19 StringTable
	3.15.19.1 String Table Resources

	3.15.20 StringToArray / StringToArrayU

	3.16 Timers
	3.16.1 blink
	3.16.2 BlinkA
	3.16.3 PLS
	3.16.4 sig_gen
	3.16.5 TMD
	3.16.6 TMU / TMUsec
	3.16.7 TOF / TOFR
	3.16.8 TON
	3.16.9 TP / TPR

	3.17 Trigonometric Functions
	3.17.1 acos / acosL
	3.17.2 asin / asinL
	3.17.3 atan / atanL
	3.17.4 atan2 / atan2L
	3.17.5 cos / cosL
	3.17.6 sin / sinL
	3.17.7 tan / tanL
	3.17.7.1 Inputs
	3.17.7.2 Outputs

	3.17.8 UseDegrees

	Support and Services

